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Abstract—Processing tasks in parallel is used in nearly all
applications to keep up with the requirements of modern software
systems. However, the current implementation of parallel pro-
cessing in GECKODB, a graph database system developed in our
group, requires to spawn many short-lived threads that execute
a single task and then terminate. This creates a lot of overhead
since the threads are not being reused. To counter this effect, we
implemented a thread pool to be used in GECKODB to reduce the
additional time required to create and close thousands of threads.
In this paper, we show our implementation of a thread pool
to process independent tasks in parallel, including the waiting
for a set of processed tasks. We also compare the thread pool
implementation against the current one. Additionally, we show
that the task and thread pool configuration, depending on the use
case, has a high impact on the thread pool performance. At the
end of our evaluation, we show that the implementation fulfils
all given requirements and generally reduce overhead compared
to creating and spawning threads individually.

Index Terms—Database Management System, Architecture of
Parallel Processing Systems, Thread and Task Management

I. INTRODUCTION

Since the amount of data that is stored and processed

by modern database systems is growing fast, sequential data

processing as only possibility is inconceivable [1]. Hence, ap-

plications and systems have to process data in parallel to reach

sufficient throughput to fulfil appropriate requirements [2]–

[4] which in turn affects the architectural design and query

processing of modern database systems [5]–[9].

The growing number of cores for both traditional CPUs as

well as trending co-processors like GPUs require to re-evaluate

core design decision in data-intense systems. For instance, Wu

et al. examined the scalability of multi-version concurrency

control (MVCC) for a growing number of threads in 2017

[10]. They concluded that multi-threading in particular and

modern hardware in general both promise notable performance

gains for high-performance database systems using MVCC.

However, they also observed that there is no clear winner

combination for several concurrency control protocol, version

storage, and garbage collection as well as the index manage-

ment strategies in MVCC.

For this paper, we focus on managing a far lower level:

general parallel data processing. In particular, with this paper

we provide insights into our thread managing strategy in

GECKODB/BOLSTER, its design and its implementation.

Parallel data processing can be achieved by different ap-

proaches, like instruction and data parallelism or multi thread-

ing. We focus on multi threading by implementing a thread

pool for the graph database system GECKODB1. The thread

pool will be integrated into BOLSTER, a high performance

library for parallel execution of primitives like for-loops, or

filter-operation on large data sets. BOLSTER has similarities

to Intel TBB [11], a C++ template library for parallel pro-

gramming, but BOLSTER is written from scratch to perfectly

fit into GECKODBs specialized storage engine and vectorized

query engine, both written in C11 [12].

In the current implementation, BOLSTER creates a fix

number of threads for each call of a primitive. This approach is

called thread-per-request. Since many primitives are executed

at the same time, a couple of drawbacks arise from this im-

plementation. First of all, the creation of threads comes along

with overhead like stack initialization and memory allocation.

Secondly, creating a huge number of threads simultaneously

may lead to large context switch overhead of the scheduler.

Additionally, debugging and profiling applications that create

many threads during runtime is time consuming.

To overcome these drawbacks, we integrate an optimized

thread pool in BOLSTER. Along with the implementation, we

measure the performance of the primitives to determine the

thread pool overhead. Additionally, we measure metrics like

waiting and busy time of threads to evaluate correct thread

pool sizes for the considered use cases.

In this work we make the following contributions:

• Design and Implementation We describe our design and

implementation of the thread pool

• Waiting Strategies We evaluate the possibility to wait

for a group of task in the calling thread

• Evaluation We compare our thread pool against the

existing implementation in BOLSTER

• Statistics per Configuration We measure and evaluate

additional statistics for different thread pool configura-

1GECKODB source code repository: https://github.com/geckodb



tions

We organized the rest of the paper as follows. In Section II, we

give preliminaries about the considered task configuration and

about thread safe access of memory. In Section III, we show

our design and implementation of the thread pool and examine

our experimental environment in Section IV. In Section V, we

describe the results of our performance evaluation. In Section

VI, we name related work and state our conclusion and future

work in Section VII.

II. PRELIMINARIES

In this section, we define our configuration of tasks that

are processed by the thread pool and state difficulties of

synchronizing thread access to memory.

A. Task Configuration

We define a Task as a structure referencing data that has

to be processed and an operation that has to be executed on

the data. In this work, we define tasks as independent, which

means tasks do not have dependencies on other tasks and can

be processed independently. Furthermore, we expect the data

passed to two tasks are stored in different memory locations.

Consequently, while executing the task operation, threads do

not access the same memory locations.

Each task can be enqueued with a priority. The priority zero

is the highest and the task will be processed by the next free

thread. The higher the priority of a task is, the further it is

placed behind in the queue. Additionally, we only consider

non-preemptable tasks. Once a task is assigned to a thread,

the thread will finish the operation of the task before getting

a new one.

B. Synchronizing Memory Access from Threads

Parallelism with multi threading works great as long as each

thread works on a separate memory location. During task

scheduling, the scheduler has to know the state each thread

has. This can be solved with signal handling or by writing

the current thread state into main memory. In this work, we

implement the second approach to avoid having another thread

that only schedules tasks to other threads.

Thread safe access to memory can be achieved by different

approaches. Firstly, a mutex thread can manage the access for

multiple other threads. Secondly, atomic operations ensure the

safe access from different threads to the same memory. We use

both approaches for different parts of the thread pool. Since

using a mutex thread can decrease access performance, we de-

cided to execute atomic operations on memory containing the

thread state information. We use a mutex thread to synchronize

the enqueueing of tasks into the priority queue.

III. IMPLEMENTATION

In this section, we describe in detail the design and imple-

mentation of our thread pool system. We show how tasks are

enqueued regarding their priority and how the waiting for tasks

is implemented. Additionally, we state our thread metrics and

show how they are integrated in the thread pool design.

A. Architecture of the Thread Pool

Compared to simply create threads on demand, managing

threads in a pool comes along with memory and CPU over-

head. The thread pool must know information about the state

each thread has and his assigned task. To measure metrics of

threads and tasks, additional memory for threads and tasks is

required.

In Figure 1, we show our design of the whole thread pool

system, containing the thread pool itself, the task priority

queue and the performance monitoring. Since measuring per-

formance metrics lead to memory and CPU overhead, we

decided to exclude the performance measurements from the

thread pool to make it optional. The performance monitoring

can be activated by a boolean parameter of the thread pool

create functions. Consequently, in the target database system,

the designers can decide for each thread pool instance, if

performance monitoring should be applied.

The thread pool system includes an array of threads and

a priority queue to store the passed tasks. We decided to

implement the thread pool using the POSIX thread library

to provide the thread pool for multiple operation systems like

Linux and Unix. Additionally, we avoid using custom compiler

flags to ensure that the thread pool can be compiled with

different compilers. The thread pool itself contains a variable

number of threads. Since Xu et al. [13] and Ling et al. [14]

show the importance of accurate thread pool size, we add a

resizing function for our thread pool, which enables to change

the amount of threads at runtime.

B. Thread Pool and Task Queue

Threads and tasks are two major entities in the thread pool

system. As we can observe from Figure 1, thread pool and

task queue are two data structures used to store the required

information related to the threads and the submitted tasks,

respectively. Each spawned thread can be either working on

a task or waiting for the next task. Consequently, we define

the states of a thread as busy and waiting. A busy thread

changes to waiting after processing its task if no other task

is enqueued. Waiting tasks do busy waiting until there are

new tasks available.

Each assigned task contains a function pointer to a routine

and a pointer to data. We implemented the task queue as a

generic priority queue utilizing an implicit heap. To ensure

thread safety a mutex is used while operating on the queue.

Every time a new task is enqueued to the task queue, two

scenarios can occur. If the new task has a priority, it is placed

in the right slot of the task queue regarding its priority and the

subsequent tasks are relocated. If the new task has no priority,

it is appended to the end of the queue. Furthermore, tasks can

refer to a handle, which is used by the thread pool to wait for

a specific amount of tasks.

With an increasing number of threads interactions with the

queue could bottleneck the task throughput. An alternative

lock free priority queue [15] based on a skip list is considered

to improve on this.
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Fig. 1. Design of the thread pool system

TABLE I
FUNCTIONS PROVIDED BY THE THREAD POOL TO PROCESS TASKS

Function Name Explanation
thread pool enqueue task Enqueue task with optional handle
thread pool enqueue tasks Enqueue tasks with optional handle
thread pool wait for task Waits until the tasks referenced by the handle are completed.
thread pool enqueue tasks wait Enqueue tasks and wait until they are finished. The main thread also participates in task execution
thread pool wait for all Wait until all enqueued tasks are finished. The main thread also participates in task execution

C. Processing Tasks

Processing tasks in a thread pool is a balancing act between

generalization the of tasks and the performance of their

execution. With higher generalization, the implementation can

be used for more use cases, but the execution performance

may decrease. Therefore, we provide a set of functions to

process task in the thread pool to match different requirements

of BOLSTER. In Table 1, we show the functions provided by

our thread pool to process tasks. One of the requirements of

BOLSTER is waiting until a set of tasks is finished. To achieve

at least the same performance as the baseline implementation

reaches, we let the main thread first participate in the execution

of the tasks and then wait until all tasks with the same handle

are finished.

To show the processing of tasks, we consider the function

thread pool enqueue tasks wait. In Figure 2, we show the

flow of task enqueueing and execution in the thread pool

system using this function. In the first step, tasks are passed

as a parameter to the enqueue function provided by the thread

pool. The tasks have to be created before passing and later

on freed after processing by the calling function. We provide

different functions to enqueue a single task or an array of

tasks.

In the next step, the tasks will be enqueued into the priority

queue of the thread pool. Before enqueueing, the function

thread pool enqueue tasks wait creates a handle and links all

tasks to it. After enqueueing the tasks to the priority queue, the

waiting threads in the thread pool pop the enqueued tasks from

the priority queue and execute the task routine. We decided to

let threads look for new tasks instead of explicitly assigning

to reduce the scheduling overhead. We call this approach first
come first serve. This happens asynchronously to the calling

function and therefore is not considered as an own step of the

process. The calling thread gets one of the passed tasks and

processes it. After finishing the task, the calling thread waits

task 

pop() 

wait_for_id()

calling 
function enqueue_tasks()

task_1 
task_2 
task_3 

Pass tasks to thread pool 

Return to calling function

Wait until passed tasks finished 

Enqueue tasks 

Thread Pool 

Q
ue

ue
 

create_id() 

Fig. 2. Workflow of task enqueueing and execution in the thread pool

until all other tasks referring to the created handle are finished

and then returns to the calling function. In the next section,

we show the waiting for tasks with handles in detail.

D. Waiting for Tasks

As mentioned before, the thread pool provides the function-

ality to let the calling function participate in the task execution

and wait until all passed tasks are processed. To wait for a set

of tasks, it is not sufficient to look firstly in the priority queue

for the tasks and then in the state of the thread pool, since

popping tasks out of the queue is not an atomic operation.

Consequently, tasks can have a state between being enqueued

in the queue and being executed by a thread.

To solve this problem, we implement the waiting for a set

of tasks using a slot-map. In Figure 3, we show the concept

of our slot-map. During the enqueueing process of tasks, a

set of tasks is mapped to a slot in the slot-map. Each slot

contains a number of open tasks to be finished and a generation

counter. We name the number of open task openTaskCount and

the generation counter genCount. Every time a set of tasks
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Fig. 3. Concept of waiting for tasks using a slot-map

is enqueued, a slot with openTaskCount = 0 is selected

and the genCount increases. Every time a thread finishes a

task, the openTaskCount of the referred slot is decreased. As

mentioned before, multiple tasks can refer to a single handle.

This handle also refers to a slot and has additionally assigned

a generation value. The waiting algorithm loops over the

following conditions before returning to the calling function: It

checks if the number of open tasks is zero or if the generation

counter of this slot has changed. If one of these conditions is

true, the waiting algorithm returns to the calling function.

To clarify the procedure of the waiting algorithm, we

consider the second slot in Figure 3. The tasks 10, 12, and

13 as well has the first handle refer to this slot. Consequently,

these tasks were enqueued referring to the first handle. Before

any of the three tasks is processed, the slot has the following

state: openTaskCount = 3 and genCount = 2. Since

the waiting thread does not know when tasks are executed

due to the asynchronous behaviour, the waiting algorithm

starts looping as long as the following condition is true:

openTaskCount �= 0 && genCount = 2. For each finished

task, openTaskCount is decreased. It is not sufficient to

check only openTaskCount �= 0, since the slot can be reused

before the waiting algorithms noticed that openTaskCount =
0. Consequently, we check if the slot stays on the same

generation. If the slot is reused, genCount increases and the

second part of the condition returns false.

Since openTaskCount has to be altered from different

threads the required decrements are ensured to be atomic. This

is in opposition to the usual goal of slot-maps to improve cache

locality. Atomics on x86 usually prevent their whole cache

line from being used while they are changed. Thus a sparse

distribution of slots should reduce collisions. To quantify this

difference, the baseline implementation searches for free slots

linearly from the beginning, while an alternative approach tries

to distribute the slots over multiple cache lines. In Figure 4,

we show implementations for both search approaches.

E. Managing Thread States

As mentioned before, accessing the same memory location

from different threads may lead to race conditions, which

means the program behavior depends on the accessing order

size_t ind = 0;
// linear search, compact slot usage
for(; ind < pool->task_state_capacity && pool->

task_group_states[ind].task_count; ++ind);
// distributed over different cache lines
for(; pool->task_group_states[ind].task_count; ind = (ind

+ 8) % MAX_NUM_TASKS);

Fig. 4. Different implementations for slot searching

of the threads. For example, while one thread updates data

at a specific memory location, another thread writes into the

data, which results to inconsistency. In Section II, we presented

two approaches to handle multithreaded access to the same

memory location, mutex threads and atomic operations and we

state where those approaches are used in our implementation.

In this subsection, we focus on atomic operations to manage

thread states. We consider the following steps for a thread to

update its state. At first, the current state has to be checked and,

depending on the current state, it has to be updated. If these

steps are implemented using an if statement and an update

function, the complete procedure is not atomic. Consequently,

another thread can update the state between check of the

current state and update. To avoid this, we use the function

atomic compare exchange strong [16] of the stdatomic
library. This function combines the check and update in one

atomic procedure. We implemented every thread state access

with this function to ensure atomic thread state updates.

This approach enables efficient dynamic and lazy resizing

of the thread pool. When the number of threads is reduced, the

now redundant threads are marked to finish after completing

their current task. If later on the number is increased again, still

running but marked threads can be enabled again ensuring that

few threads have to be created and that the number of running

threads will not temporarily exceed the requested size. After

presenting the enqueueing, processing, and waiting for tasks,

we show the second component of our thread pool system, the

performance monitoring.

F. Performance monitoring

The performance monitoring component of the thread pool

system is responsible for collecting data about threads, tasks,

and the thread pool instance. We will use the information

collected in this component for analysis and performance

optimization in later stages. As mentioned before, the perfor-

mance monitoring is an optional component, since evaluating

the following statistics can reduce the execution performance

of our thread pool. We divide the collected statistics into

the sections task statistics, thread statistics, and thread pool
statistics.

1) Task Statistics: Collecting statistics about the time tasks

spend in the priority queue or during the execution is useful

to tune the thread pool configuration for better performance

results. In Table II we show the statistics that are collected for

each task.

How long a task waits in the queue before being executed

is a good metric to adjust task priority or the thread pool



TABLE II
TASK STATISTICS WITH THEIR INTERNAL NAMES AND DESCRIPTIONS

Statistic name Description
enqueue time Time when the task was enqueued
execution time Time when the task execution begins
complete time Time when the task execution is finished

size. For example, if an enqueued task with priority 0 still has

a large difference between enqueue time and execution time,

the thread pool size may be too small. Otherwise, if a large

number of tasks with low priority have small differences

between enqueue time and execution time, this may indicate

that the thread pool size is too large. A better indicator of not

optimized thread pool sizes are statistics per thread.

2) Thread Statistics: As mentioned before, adjusting the

thread pool size based on task statistics may not be very pre-

cise. Consequently, collecting statistics per thread is necessary

for a good evaluation of the relation between tasks and threads.

In Table III, we show our statistics collected for each thread

in a thread pool instance.

TABLE III
THREAD STATISTICS WITH THEIR INTERNAL NAMES AND DESCRIPTIONS

Statistic name Description
waiting time Time the thread spend waiting (ms)
busy time Time the thread spends executing tasks (ms)
task count Number of tasks the thread has executed

The busy time of a thread strongly depends on the executed

tasks and therefore is a metric that gives less information

about the thread pool itself. In contrast, the waiting time is

a good indicator to reveal less used threads in the thread pool

to determine an optimal amount of threads for the current use

case. Furthermore, the task count of thread compared to the

number of tasks processed by the thread pool indicates the

degree of usage of the thread. To give further possibilities for

optimizing the thread pool, we collect statistics for each thread

pool instance.

3) Thread Pool Statistics: To consider the thread pool

instance, an important metric is the average waiting time of

tasks. In order to optimize the thread pool size, a balanced

relation between the waiting time of tasks and the number

of threads must be found. Furthermore, at a specific time,

the relation between enqueued and completed tasks can be

interesting. In Table IV, we show our statistics collected for

each thread pool instance. We will use these statistics to adapt

our thread pool implementation to different use cases later on.

G. Testing and Memory Check

As last aspect of our implementation, we show how we test

the thread pool and how we ensure to avoid memory leaks.

Since GECKODB already uses GTEST [17] for unit testing,

we also wrote our test using this framework. GTEST provides

a simple, powerful library to perform unit tests in C++. We

wrote unit tests for the priority queue, the thread pool itself

TABLE IV
THREAD POOL STATISTICS WITH THEIR INTERNAL NAMES AND

DESCRIPTIONS

Statistic name Description
working time Time the thread pool runs (ms)
task complete count Number of tasks the thread pool has completed
task enqueued count Number of tasks the thread pool has enqueued
avg complete time Average time span from enqueueing until

execution of tasks
avg wait time Average time of tasks spend in the queue

and the performance monitoring. As mentioned before, we

use functions from the stdatomic library of C. Using this

library in GTEST results in compiler errors with GCC, since

the C atomic implementation differs from the C++ one of

the standard library and the GCC developers will not fix this

issue. Consequently, we wrote a workaround not using the C

stdatomic library in the GTEST compilation unit.

Since C as low level language does not have an own

automatic memory management, memory leaks may occur

using heap space allocations. To find and remove all memory

leaks in our implementation, we use the tool VALGRIND,

which offers different functionalities to find race and jump

condition and to count unfreed heap blocks. We found memory

leaks in our priority queue tests and also in the deallocation

of thread pool instances. In the following sections, we show

our experimental setup and the results of our evaluation.

IV. EXPERIMENTAL ENVIRONMENT

In this section, we present our experimental environment

focusing on the design of our benchmarks and the system

configuration we used to evaluate our thread pool implemen-

tation.

A. Evaluation Setup

In our evaluation setup, we focus primarily on the compar-

ison of our thread pool against the baseline implementation in

BOLSTER, that creates new threads at runtime for each request.

We simulate calls of BOLSTER primitives with different thread

pool and task configurations and compare the results against

the baseline.

Additionally, we evaluate the metrics for threads, tasks and

the thread pool mentioned in Section III-F regarding the thread

pool and task configuration used in the BOLSTER primitives.

To evaluate optimal configurations for the thread pool, we

consider the relation between waiting and completion time of

thread pool instances with different sizes.

B. Experimental Configuration

For testing purposes we used primarily LINUX setups,

for one UBUNTU 17.04 (LINUX 4.13) in a virtual machine

environment, second ARCH LINUX (LINUX 4.17.3-1) running

native, both updated on stable branch. Tests have also been

conducted on WINDOWS 10 and MACOS HIGH SIERRA

machines.

In our setups SKYLAKE and KABYLAKE as well as RYZEN

processors have been used with memory ranging from 8 to



24 GB of both DDR3-SODIMM and DDR4-SODIMM. All

benchmarks have been repeated three times and a median value

of all repetitions are being used for evaluation.

V. EVALUATION

In this section, we present the results of our evaluation

according to the setup we stated in the previous section.

We start with an introduction of the benchmark methods to

compare our thread pool against the baseline implementation

and present the results. Furthermore, we show the relation of

waiting time and completing regarding different thread pool

configurations.

A. Validity of Results

Before presenting our evaluation results, we give some

preliminaries about the validity of our results. At first, all

measurements are executed on all machines we listed in our

experimental configuration, but in this work we present only

the results measured on ARCH LINUX with kernel 4.17.3-1

and 24 GB DDR4-SODIMM. We decided to use this system,

since it is running a current kernel version and not in a

virtual environment. Additionally, we use gnuplot to generate

diagrams from our results, consequently, using a windows

machine is not optimal.

Secondly, the measured results represent the usage of our

thread pool implementation, but may differ strongly in other

applications. Depending on the number of threads used outside

the thread pools and the ability to parallelize work, the

performance may increase less than shown in our tests.

Thirdly, measuring multi threading performance highly de-

pends on the current workload of the system and the scheduler.

We determine this in our evaluation since tests differ strongly

in their results. Although we make average measurements for

each benchmark, these represent the performance increase at

the current system workload.

B. Comparison against Baseline Implementation

As most important aspect of our evaluation, we compare

our thread pool against an approximated version of the base-

line implementation. To justify the performance comparison

results, we present the different benchmark implementations

in detail before we show the evaluation results.

1) Benchmark Implementation: Since BOLSTER is deeply

integrated into GECKODB and the workload and usage of

multi threading depends on the graph data in the system, we

can not directly use the BOLSTER implementation for our

evaluation. Thus, we extracted the respecting code parts into

an own implementation and use this for a direct comparison

against one that uses our thread pool.

In Figure 5, we show the approximated version of the

BOLSTER multi threading code that we use as baseline im-

plementation. In our benchmark. the method cmp baseline is

called multiple times with a different numThreads parameter.

Within each call, numThreads threads are created and all

of these execute the benchmark method work large, that

calculates a huge amount of exponential values in a loop.

void cmp_baseline(int numThreads)
{
struct timespec begin, end;
clock_gettime(CLOCK_MONOTONIC, &begin);

double results[numThreads];

pthread_t threads[numThreads];
for (int tid = 1; tid < numThreads; tid++)
{
results[tid] = (double)(tid+1);
pthread_create(&threads[tid] , NULL,

&work_large, &results[tid]);
}

// Let the calling thread process one
// task before waiting
work_large(&results[0]);

for (int tid = 1; tid < numThreads; tid++) {
pthread_join(threads[tid], NULL);

}

clock_gettime(CLOCK_MONOTONIC, &end);
test_results_baseline[numThreads] +=
__get_time_diff(&begin, &end);

}

Fig. 5. Baseline multi threading implementation extracted from BOLSTER

void cmp_pool(int numThreads)
{
thread_pool_t* pool =
thread_pool_create(numThreads, 1);

struct timespec begin, end;
clock_gettime(CLOCK_MONOTONIC, &begin);
double results[numThreads];
thread_task_t tasks[numThreads];

for(int i = 0; i < numThreads; ++i)
{
results[i] = (double)(i+1);
tasks[i].args = &results[i];
tasks[i].routine = work_large;
thread_pool_enqueue_task(&tasks[i], pool,

NULL);
}

thread_pool_wait_for_all(pool);

clock_gettime(CLOCK_MONOTONIC, &end);
test_results_pool[numThreads] +=
__get_time_diff(&begin, &end);

thread_pool_free(pool);
}

Fig. 6. Thread pool benchmark to compare against baseline implementation

After the calling thread takes part in execution, it waits until

all created threads are joined. The elapsed processing time is

measured from the begin of the method until the join of all

threads finished.

To compare against the presented baseline implementation,

we developed a method that does the same amount of calls

of work large as the baseline, but uses a thread pool instance

instead of creating new threads. In Figure 6, we show this

implementation called cmp pool that creates and fills tasks

and enqueues these into a thread pool instance. Since we

assume, that the thread pools are reused for multiple requests,

we exclude the thread pool creation and deallocation from

the time measure. Consequently, only creating and processing

tasks is included in the considered elapsed time.
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2) Evaluation Results: In our performance comparison,

both implementations are executed three times with 4, 8, 16, 32
as numThreads parameter and the summed results are divided

by three. We consider a number between 4 and 32 as a useful

amount of threads to reach a sufficient performance increase

due to parallelization, but also to have the possibility to debug

and profile them.

In Figure 7, we show the comparison results of both

mentioned implementations and the different numThreads pa-

rameters. Our thread pool implementation is faster than the

baseline for all numThreads parameters. Based on Figure

7, we make the following conclusions. Firstly, compared to

strict processing workload, create, and later on join threads,

consumes much time. Our thread pool implementation reaches

up to a multiple of performance increase compared to the

baseline. Since the creation and join of threads is the main

difference between both tests, reusing threads will lead to this

noticeable performance increase.

Secondly, the task creation and enqueuing have only slight

impact on the performance, since the baseline does not include

these operations, but is still clearly slower than the thread pool

implementation.

C. Waiting Time Evaluation

As mentioned before, instead of implementing explicit

scheduling to assign tasks to threads, we use the first come
first serve approach. Each thread that currently has no task,

checks the priority queue to pop a new task in a loop. Since

our priority queue manages the memory access from different

threads using a mutex thread, the queue is locked while a

thread asks for a task. Consequently, in large thread pools, the

accessing time of the priority queue may increase along with

the waiting time of threads. To examine this behavior with

increasing thread pool size, we measure the average waiting

time of thread pools with different sizes.

To further test the performance of the task-completion

system, in particular the previously mentioned wait-slot ac-

quisition, the main thread periodicity has to wait for a specific

task to finish and the total utilization is measured.
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Fig. 8. Relation between waiting time (orange) and completion time (blue)
of thread pools with different sizes processing 10000 tasks

1) Benchmark Implementation: To examine the waiting

time behavior of larger thread pools, we use a similar im-

plementation than the cmp pool method, which creates 10000

tasks at different thread pool sizes. Again, we consider sizes

from 4 to 32 threads as useful test case and take the average

value of three measurements. To measure waiting and com-

pletion time, we use the monitoring component of our system

and evaluate the thread pool statistics of each instance.

2) Evaluation Results: In Figure 8, we show the relation of

waiting and completion time of different thread pool sizes. The

waiting time is, compared to the completion time, very small

and nearly constant for all considered thread pool sizes. From

this observation, we draw the following conclusions for our

first come first serve scheduling approach. Firstly, constant av-

erage waiting time indicates only small performance decreases

due to priority queue locking. Secondly, even for 32 threads

in one pool instance, the waiting time occupies only a small

fraction of the completion time, which indicates good thread

usage. Thirdly, the execution performance increases along with

the thread pool size, which shows that even for 32 threads,

parallelization leads to faster task execution.

As mentioned before in this section, the performance results

depend on the current workload of the system, as seen by the

waiting time shown in Figure 8. Although the priority queue

locking by the mutex thread should increase the waiting time

slightly with bigger thread pool sizes, the last measuring point

is lower than the previous points.

The selection strategy of wait-slots has only a small impact

on occupation, as seen in Figure 9. The uniform distribu-

tions advantage amounts to 0.1% across different numbers of

threads and is far overshadowed by differences in the threads

to tasks ratio.

In Figure 10, we show that the lock-free priority queue

performs better. With a difference in utilization of 2% when

using only two threads the improvement over our mutex

based implementation is not insignificant. A total occupation

of over 99.5% also demonstrates that most overhead in our

implementation comes from the priority queue when supplying

a balanced stream of tasks. With an increase in available
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threads the performance of the mutex solution further de-

creases, while the lock-free queue-variants utilization remains

nearly constant.

D. Summary

As last step of the evaluation, we summarize our results and

compare them to the requirements of GECKODB. As men-

tioned before, our implementation reaches better performance

than the baseline regarding our specific tests. Consequently,

we solved the task for implementing and integrating the thread

pool into BOLSTER to reach at least the baseline performance.

Additionally, using our thread pool implementation solves the

problem, that debugging and profiling with a huge number of

threads is not possible.

Although a small and constant waiting time was not a

requirement for integration into GECKODB, we ensure that

assigning many tasks works fast for different thread pool sizes.

Regarding the performance and also the design requirements

of GECKODB and BOLSTER, we fulfil these requirements

and successfully implemented and evaluated our thread pool

implementation.

The choice of a different priority queue data structure

presents an opportunity for further optimizations, in particular

to scale well with large amounts of threads.

VI. RELATED WORK

Implementing multi threading can be realized using different

approaches from spawning new threads to reuse them in

thread pools. Pyarali et al. show that a thread pool model can

significantly improve system performance and reduce response

time [18]. They present different approaches to implement

thread pools and show the dependency on use cases of these

implementations.

Schmidt et al. present different implementations of multi

threading, including two types of thread pools. They distin-

guish between the Worker Thread Pool Architecture and the

Leader/Follower Thread Pool Architecture [19]. In the first

approach, an IO-thread selects a connection, reads the requests

and dispatches the tasks to an array of threads. Drawbacks

of this system are excessive context switching effort along

with synchronization required to manage the request queue.

In the second approach, one thread of the pool becomes the

leader and does the reading of the task into an internal buffer.

If the request is valid, the thread itself processes the task

and a follower thread becomes the new leader. This approach

minimizes the context switching effort compared to the first

one.

Along with the design of thread pool systems, the perfor-

mance strongly depends on the number of threads used in a

thread pool. Xu et al. present a performance study for a set

of performance metrics combined with a heuristic algorithm

for dynamic resizing of thread pools [13]. They show the

correlation between average task idle time and the throughput

of thread pools and present the effectiveness of dynamically

adjusting the number of threads.

Compared to heuristically adjust the number of threads,

Ling et al. formalized the problem of finding the optimal

number of threads by establishing mathematical relationship

among optimal thread pool size, system load and the associ-

ated costs [14]. They show the applicability of their model and

plan to further examine it based on additional metrics.

VII. CONCLUSION AND FUTURE WORK

In this work, we describe our implementation of a thread

pool system. We present in detail the implementation and

show our evaluation results containing a comparison against

the baseline implementation and the waiting time behavior

over different thread pool sizes. Within our implementation,

we state the differences of parallel memory access as well as

the problem of implementing synchronous waiting for a set of

tasks.

As presented in the evaluation, our thread pool implemen-

tation reaches better execution performance than the baseline

because of avoiding the creation of short living threads for

each request. We measured the average time threads spent

waiting in different thread pool sizes and present, that even

for a size of 32 threads, the waiting time stays constantly



small. Consequently, we conclude that using first come first
serve as scheduling approach leads to small waiting times and

high execution performance.
To sum up, our thread pool implementation fulfils all

performance and design requirements of GECKODB and

BOLSTER and reaches even faster execution time than the

existing implementation. In the future, we plan to make the

following adaptations to our thread pool system. Firstly, we

want to reduce the number of dynamic allocation, since heap

allocations mostly are slower than stack allocations. Secondly,

we want to examine the usage of existing priority queue

implementations for our thread pool system. Thirdly, we plan

to integrate a dynamic resizing function based on the collected

statistics of the performance monitoring component.
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