
Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg

Nr.:

Thorsten Winsemann, Veit Köppen

Arbeitsgruppe Datenbanken

FIN-002-2012

Persistence in Enterprise Data Warehouses

Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-002-2012

Persistence in Enterprise Data Warehouses

Thorsten Winsemann, Veit Köppen

Arbeitsgruppe Datenbanken

Technical report (Internet)

Elektronische Zeitschriftenreihe

der Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

ISSN 1869-5078

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120
39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_reports.html

Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss:

Bezug: Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Dekanat

Thorsten Winsemann

thorsten.winsemann@t-online.de

01.03.2012

Persistence in Enterprise Data Warehouses

Thorsten Winsemann, Veit Köppen

School of Computer Science

Otto-von-Guericke University Magdeburg, Germany
thorsten.winsemann@t-online.de, veit.koeppen@ovgu.de

Abstract. Yet, persistence of redundant data in Data Warehouses is often
simply justified with an achievement of better performance when accessing data
for analysis and reporting. Especially in Enterprise Data Warehouse systems,
data management via multiple persistence levels is necessary to condition the
huge amount of data into an adequate format for its final usage. However, there
are further reasons to store data persistently, which are often not recognized
when designing such warehouses. As processing and maintenance of data is
complex and requires huge effort, less redundancy will downsize effort. Latest
in-memory technologies enable good response times for data access, so that the
question arises, what data for what purposes really need to be stored
persistently - and how can this be efficiently decided. We present a
compendium of purposes for data persistence and use it as a basis for decision-
making whether to store data or not. As an outlook, we expand this discussion
on Enterprise Data Warehouses based on in-memory databases.

Keywords: Enterprise Data Warehouse, Persistence, In-Memory Database

1 Introduction

Today‘s Data Warehouses (DW) are often characterized by enormous data volumes
[Wi08]. When designing and operating a DW, there are high requirements regarding
data provision, such as performance, granularity, flexibility, and actuality. Besides,
restrictions call for additional, redundant data. For example, materialized views and
summarization levels are commonly used for enhancing speed of data access, such as
for reporting and analysis. Performance is still the main reason for storing data
redundantly, but there are several other reasons which lead to additional data
persistence, as for instance design decisions, usability, or safety. Such reasons are
often underestimated or even not considered, but frequently motive for storing data.
Yet, additional storage of data always requires a huge effort to guarantee consistency
and limits prompt data availability.
Latest announcements pledge technology, based on in-memory databases (IMDB), to
get rid of any redundant data without any loss of performance [P+09]. Assuming that
performance of data access – as the main reason for storing data – is much less
important in IMDB, the question arises, which data persistence is really necessary in
DW? Is it possible to do any kind of reporting on raw data that is transformed on-the-
fly, according to its usage? Do any reasons for storing data remain? In order to answer
these questions, we list purposes for persistence, which we clarify by examples, and
point out potential conflicts between data storage and usage. Beyond, we define

Persistence in Enterprise Data Warehouses 2

indicators for supporting decisions on whether to store data or not. This paper is a first
step to discuss data persistence in changing DW environments. Note, such
considerations are also valid, but less important for DW based on conventional
databases, as simply the lower performance of the database (DB) motivates additional
data storage.
This paper is organized as follows: Section 2 introduces briefly to specialities of
Enterprise Data Warehouses (EDW) and a layered architecture. In Section 3, we
present a compendium of reasons for data persistence in today’s EDW, grouped and
amended by examples, and define a diagram for supporting the decision whether to
store data. Moreover, we describe potential conflicts arising from requirements of
data usage and tasks to fulfill them. In Section 4, we present prospects of data
persistence in in-memory based EDW. Section 5 gives an overview on related work,
and Section 6 concludes the paper with an outlook on future work.

2 A Layered Architecture for Enterprise Data Warehouses

An Enterprise Data Warehouse is a Business Data Warehouse [P+09], thus supporting
management’s decisions and covering all business areas. Beyond, EDW are an
important basis for several applications, such as Business Intelligence (BI), planning
and Customer Relationship Management (CRM). As they are embedded in an
enterprise-wide system landscape, an EDW has to provide a single version of truth for
all analytical data of a company. That means, there is a common view on centralized,
accurate, harmonized, consistent, and integrated data to treat information as corporate
assets. An EDW covers all domains of a company or even a corporate group,
including collection and distribution of data with heterogenous source systems and a
huge amount of data. The range of use is often world-wide, so data from different
time-zones have to be integrated. Frequently, 24x7 data availability has to be
guaranteed, lacking of regular off-peak-hours and facing the problem of loading and
querying at the same time. Despite this, there are other quite complex requirements on
data: ad-hoc access, near real-time actuality, and often applications, such as CRM,
that require very detailed and fine-granular data with a long time horizon.
Furthermore, there has to be a flexible and prompt way to satisfy new or changing
needs for information, and, last but not least, the access to sensitive data has to be
secured by a powerful authorization concept. Therefore, several reasons for
persistence are quite particular for EDW.

Persistence in a Data Warehouse is closely connected to its architecture. That means,
the decision of storing data comes along with the data’s format and the area or layer,
where data are stored. Excluding the data sources, common reference architectures –
see for instance [PR96], [MB00], [GC06], and [Ze08] – define three main areas,
representing three aspects of data handling: data acquisition in the staging area, data
processing in the basis data-base, and data provision in the data marts. Within this
rather rough model, persistence on each level is implicit [De09]. Regarding EDW, a
layered architecture as introduced by [SA09] refines this approach (cf. Figure 1).
Herein, the layers become more detailed and dedicated. Each of the five layers
represents an area for increasing the data’s value with respect to the usage – if
necessary. That means, for instance, that a data set does not have to be lifted to the

Persistence in Enterprise Data Warehouses 3

highest level of data marts (and stored there), if it is already usable (for reporting etc.)
on a lower level. Yet, a layer does not imply data storage by definition. One has to
consider the data format and where to store data. Though, persistence has to be
decided prior based on purposes for data needs.

A layered architecture (s. Figure 1) is divided in several areas, which we describe
briefly in the following.
The Data Acquisition Layer represents the extraction phase, the “inbox” of the
Warehouse, where incoming data are accepted usually without modification.
In the Quality & Harmonisation Layer, data are integrated technically and
semantically, including de-duplication, aspects of information integration (cf. [LN07])
etc.; that is, transformation within “conventional” ETL process.
At the Data Propagation Layer, the company’s data are kept as a single version of
truth of harmonized and integrated data, without any business logic; therefore, it
defines a common data-base for all applications.
In the Business Transformation Layer, data are transformed due to business’ needs,
which can be dependent on different departement requirements; for instance, order
and invoice data are combined for computing open orders’ information.
At the Reporting & Analysis Layer, data are transformed mainly according to
requirements of usage (e.g., computing rolling periods’ values) and to enable fast
access to the data.
Within the Operational Data Provider, data is simply transformed for specific
business cases (e.g., near real-time reporting).
Although the boundaries are shifting, a rough classification of these layers to the three
warehouse’s aspects of data handling can be done: Data acquisition is covered within
the Data Aquisition and the Quality & Harmonisation Layer, data processing in the
Data Propagation and Business Transformation Layer, and data provision in the
Reporting & Analysis Layer.
[W+11] gives a more detailed description of layered architectures and its comparison.

Figure 1: Layered Architecture for EDW (based on [SA09])

Data Sources

Users

D
ata W

arehouse S
ystem

Reporting & Analysis Layer

Business Transformation Layer

O
perational D

ata P
rovider

Data Propagation Layer

Quality & Harmonisation Layer

Data Acquisition Layer

Persistence in Enterprise Data Warehouses 4

3 Reasons for Data Persistence

In this section, we present reasons as well as requirements for data persistence in
EDW. In the first part, persistence’s purposes are addressed; in the following sub-
sections, we group such reasons and define decisions’ indicator for data persistence.

3.1 Purposes for Persistence

In literature, mainly two reasons for persistence in DW are mentioned: the storage of
data in an already transformed state in the basis data-base and the storage of
redundant, aggregated data in the data mart layer. However, there is a broad range of
further reasons for storing data in a DW system. They can be based on technical
conditions, the company’s terms of governance, legal restrictions The ease of data
maintenance is another purpose as well as simply subjective needs for safety. As far
as we know, reasons for persistence are rarely mentioned in the literature. Hence, we
miss a collection as we present and describe in the following. Additionally, we
illustrate each reason with one or more examples in detail. Of course, data persistence
can also result of the combination of two or several reasons. The listing arranges the
purposes in five areas: data acquisition, data modification, data management, data
availability, and laws and provisions.

3.1.1 Data Acquisition

Source system decoupling: Enterprise Resource Planning (ERP) systems, as common
sources for EDW, have constant, heavy system load: transactional processing during
business hours and batch jobs running in the off-hours. Therefore, additional
processing due to data extraction has to be minimized. In order to reduce the load,
data are stored immediately in the warehouse’s inbound layer after successful
extraction. Figure 2 illustrates this process in exemplarily. After the extraction is
triggered by the DW (1), the data is determined in the ERP (2) and send to the DW,
bundled as sets of data packages (3). The last package is accompanied by end-of-
extraction information (4); after all data are successfully stored in the staging area of
the DW, the process is closed in the ERP system (5). The extracted data are typically
stored without any transformation to enhance the time for processing. In some cases,
data are enriched by control or informative data, such as date of origin and timestamp.

Figure 2: Exemplary (Control) Data Flow while Data Extraction

ERP

Dataflows:

Control

Data

DW

Control

Data

1

2 3

4

5

Data A

Data B

Data X

Persistence in Enterprise Data Warehouses 5

Data availability: Often, data are no longer available or have been changed in their
sources. For instance, this applies to data that are extracted from the internet (e.g.,
stock exchange quotations), where volatileness of data is common [FS07]. Other
examples are: data from files that are overwritten regularly, data from disconnected
legacy systems, or data of changing documents, for which no change logs exist (cf.
also next purpose). Moreover, this also applies for temporary non-availability; for
instance, network connections can be jammed, so data is not accessible when needed.

Extensive data recreation: The recreation of data that are no longer available directly
is extensive, both in time and resource consumption. Therefore, such data are stored
in DW, usually in an aggregated format. This especially belongs to data in ERP that
are no longer used for daily business. Nonetheless, they must be kept and have to be
archived, that means copied to external and slower accessed mediums. Another
example illustrates changes in documents, in which change logs data are stored
differently (e.g., in other tables and/or differing formats) than the actual status of the
document.

Data Lineage: The need for reliable data requires verification – often as recurring
tasks. Transformed data are very difficult to verify, as usually one or many input data
lead to one ore many output data. It becomes nearly impossible, if source data do not
exist; only data transformed by filters are reproducible without origins. Moreover,
report data often result from multi-level transformation processes; for later
validations, backtracking of data origins is essential. Source data or intermediate
results are stored to enable or to ease data lineage; see [CW03] for detailed
information.

3.1.2 Data Modification

Figure 3: Simple Example for “Changing Transformation Rules”

Changing transformation rules: Transformation rules can change, for instance due to
modified business requirements. Unless a timestamp is not part of the data (and the
history of the transformation rules is not kept), it will not be possible to transform
source data the same way as before. As simple example, imagine changes in sales tax
values (VAT). As long as they are a fix part of the transformation rule (s. Figure 3a)
as just a scalar data transformer, information is lost when rules are changed, and
former results are not reproducible. Here, an alternative solution is rather simple: tax

τ(VAT)

Dataflow

Date-

To

Date-

From

VAT(%)

...

a)

b)

... Date Amount(VAT;$)

...

... Date Amount($)

...

... Date Amount(VAT;$)

...

... Date Amount($)

...
τ

Persistence in Enterprise Data Warehouses 6

values are stored separately with their validity periods, and are read during
transformation (s. Figure 3b). Nonetheless, transformation rules can be much more
complex, including several lines of code, and therefore require extensive logic for
variable usage. In our example, we illustrate only one piece of information to access
during transformation. Imaging, a transformation needs several pieces of information
from different tables of an external system. For each of these tables, an extractor has
to be defined, including loading procedures and administration. Often, the figures are
hard-coded in the transformation to avoid such a complex setup.

Addicted transformation: As “addicted”, we define transformations that need further
data from different sources to transform data properly. For instance, the averaged
distribution of employees’ bonuses requires the total staffs’ number (per department
and/or period). Therefore, this information has to be available in DW; in Figure 4, the
addicted transformation is marked as “τa”. Correct processing is guaranteed by storing
all data that must be available at the time of transformation.

Figure 4: Simplified Example for “Addicted Transformation (τa)”

Complex data transformation: Due to complexity, transformation of data can be very
expensive regarding computational time and resources. Therefore, data are stored to
avoid repeated transformations. In Figure 5, data transformation from data set A to C
contains both, complex, time-consuming operations, and processing that needs all
tuples for a specified character combination (e.g., percentage and average
computation). As complex operations can be done on single tuples, the transformation
is split into two parts: “τc” includes all complex operations, the result is stored in data
set B, and “τ(Σ,%,Ø)”, in which all tuples are required. Through this, we avoid
repeated complex transformation.

Figure 5: Simplified Example for “Complex Transformation (τc)”

ERP DW

τa

τ

τ

Dataflow

Contract ... Amount ($)

.......

Employee ... Department

.......

Contract ... Amount [$)

.......

Department Month Nr. of Staff

.......

Employee ... Bonus ($)

.......

DW

τ τc,(Σ,%,Ø)

Dataflow

C

τcτ τ(Σ,%,Ø) C

A

A B

Persistence in Enterprise Data Warehouses 7

Complex, different data: Sometimes, data are very complex and – semantically and
syntactically – different to the warehouse’s data; hence, they are stored in order to
transform it stepwise for its diverse usage. Figure 6 shows an example, in which data
is transformed stepwise and stored in each case subsequently. Here, the
transformations are: data harmonization and schema integration (τH), de-duplication
(τD), data enrichment (τE), and data aggregation (τ(Σ)).

Figure 6: Simplified Example for “Complex, Different Data”

For a more detailed illustration, consider the extraction and processing of point-of-
sales (POS) receipts; the example with (an extract of) figures:

Relation of incoming data I:
I : <recno[numc10]; dates[date10]; buyer[numc10]; bname[char60]; amodc[dec10,2];

dcurr[char2]>
 {<12345; 31.10.2011; 7410000; Meier; 25,00; EU>;
 <12347; 31.10.2011; 6820000; Schulz; 10,00; EU>}

τH: recno[numc10] � docnr[char10], dates[date10]�[date8], buyer[numc10] �
custom[char10], bname � cname, amodc[dec10,2]�[dec10,2], dcurr[char2]�[char3]

Relation of harmonized and integrated data A:
A : <docnr[char10]; dates[date8]; custom[char10]; cname[char60]; amodc[dec15,2];

dcurr[char3]>
 {<0000012345; 20111031; 0007410000; Meier; 25,00; EUR>;
 <0000012347; 20111031; 0006820000; Schulz; 10,00; EUR>}

τD: ‘Meier’ � ‘Mayr’, ‘Schulz’ � ‘Schultz’

Relation of deduped data B:
B = A
 {<0000012345; 20111031; 0007410000; Mayr; 25,00; EUR>;
 <0000012347; 20111031; 0006820000; Schultz; 10,00; EUR>}

τE: Determination of customer class (cuscl[char3])

Relation of enhanced data C:
C: <docnr[char10]; dates[date8]; custom[char10]; cname[char60]; cuscl[char3];

amodc[dec15,2]; dcurr[char3]>
 {<0000012345; 20111031; 0007410000; Meier; 015; 25,00; EUR>;
 <0000012347; 20111031; 0006820000; Schulz; 015; 10,00;EUR>}

τ(Σ): Aggregation on level month + customer class

Relation of aggregated data D:
D: <month[date6]; cuscl[char5]; amodc[dec15,2]; dcurr[char3]>
 {<201110; 015; 35,00; EUR>}

DW

Dataflow

τD τ(Σ) DτH τEI CBA

Persistence in Enterprise Data Warehouses 8

3.1.3 Data Management

Constant data-base: In EDW, updating of data sets with new data is frequent and
usually happens up to several times per hour. There are several applications – analysis
and especially planning – where users rely on constant data, which must not change
for the analysis or planning phase (i.e., a given period of time), and therefore is stored
separately. Besides storing, there are other options to separate data, such as versioning
or using timestamps. However, such methods enhance all general data with
information for a dedicated usage, and lead to rising data volume. Moreover, for
example a planning data-base is typically a subset of available data; separation offers
faster processing on a smaller data set, and makes data verification easier, too.

En-bloc data supply: Usually, new data trickle into the DW from several sources and
temporary shared; especially for EDW, there are several source systems, often
external (i.e., non-in-house), world-wide, and situated in different time zones. As a
result, data flow continuously and sometimes unsteady into the DW. After integrating
them syntactically and semantically, all new data are kept separately and released to
the warehouse’s basis data-base at a certain point of time. Thus, a “plausibility gate”
[Zu11] is established, this ensures defined and plausible data sets for reporting,
analysis, and further processing. Figure 7 illustrates a simplified, but common
scenario within a sales and distribution application. The DW extracts data from a
(company-owned) system for order and invoice management (“OIS”), the deliveries
are provided by an external delivery system (“eDS”). Delivery data are sent to the
DW once a day during night, whereas order and invoice data flow in every two hours.
However, delivery data can be prevented for any reasons. Now, imagine the
calculation of “open order quantity” according to following formula:

Open Order Quantity = Order Quantity – Delivery Quantity

Figure 7: Simplified Example for “En-bloc Data Supply”

If data are reportable as soon as they have been integrated technically, open orders
would grow during day, as no adequate delivery data come in. “Open order quantity”
would not be plausible in this case; therefore, a “plausibility gate”, which enables to
release comparable data, is installed with (additional) data storage. Only data that
have passed this gate are reportable (i.e., data in the four data cubes in Figure 7).This,
of course, is not limited to a system landscape with external systems connected; it

OIS

DW

ODI

Or-

der

Deli-

very

In-

voice

eDS

Dataflow

Reportable Data
Integrated

Data

Extracted

Data

Source

Data
„Plausability

Gate“

Deli-

veries

Invoices

Orders

Invoices Invoices

Deli-

veries

Deli-

veries

Orders Orders

Persistence in Enterprise Data Warehouses 9

would also be valid even for one-source-systems, if the processing time for the
involved data sources differed in execution and processing time.

Complex authorization: DW contain vast amount of information which have to be
kept secured for forbidden access – and authorization administration is a sensitive
topic and very sensitive (e.g., [W+01]). For instance, it is possible to define access
right on dedicated dimensions (e.g., sales organization) and facts (e.g., revenue), and
on values within those fields (e.g., sales organization = “North”). Moreover,
authorization can be included and excluded. As a result, authorization profiles become
quite complex and often confusing. Instead of defining such detailed authorizations,
creating dedicated data marts with relevant authorization is often easier.

Single version of truth (SVoT): Data are stored in the basis data-base after being
harmonized, syntactically and semantically integrated, according to the company’s
general rules. As these data remain basically unchanged and free of any explicit
business logic, they represent the single version of truth of the company’s data, and
represent a set of integrated, homogeneous, comparable, and trustable data – with
respect to data governance, too. For example, a DW is provided with key-figure
“revenue” from both, sales (REV_S) and finance (REV_F) application. REV_S value
is in document currency, whereas REV_F is in local currency. Even if, for instance,
REV_S is converted into local currency in the DW, both figures might slightly vary,
due to different rates or booking dates. Unambiguousness can be reached by defining
one of the two figures as “the company’s revenue”, or denoting them clearly (e.g.,
“turnover/sales” vs. “revenue/finance”). Thus, a clear, common, and company-wide
understanding of the meaning of the data is defined (e.g., “how is revenue defined?”,
“what really does mean working day?”). Data are kept as granular as possible with an
adequate time horizon, and absence of business logic offers utmost flexibility.
Therefore, they are basis for further use of any application – meaningless whether it is
a report for finance or logistics, for instance. Based on this, even local or departmental
data marts, or such created for special purposes, contain reliable information; compare
[SA09] and [W+11]. In Figure 8, a simple example is shown. Invoice header and item
data are extracted and processed for further usage in the areas of sales and distribution
(SD) and controlling (CO). Although the data are processed differently, according to
their unlike usage, they refer to the same data-base, the “Invoices” relation.

Figure 8: Simplified Example for “Single Version of Truth”

The example is illustrated with figure in the following:

τH τ(Σ)
Billing

(SD)
τE

DW

Dataflow

τH

τE

τ(Σ)
Billing

(CO)

τC

τC

Invoice

Item

Invoice

Header

Invoices

Invoices

(SD)

Invoices

(CO)

Persistence in Enterprise Data Warehouses 10

“Invoice Header” relation:
 <invnr[char5]; dates[date8]; dateb[date8]; custom[char]
 {<12345; 20111031; 20111101; 74100>}

“Invoice Item” relation:
 <invnr[char5]; itmnr[char3]; matnr[char6]; quasu[dec15,3]; sunit[char2]; modc[dec15,2];

dcurr[char3]>
 {<12345; 001; 000471; 2,000; PC; 20,00; EUR>;
 <12345; 002; 000473; 1,000; PC; 5,00; EUR>}

τC: Determination of customer class (cuscl[char3])
τC: Determination of material class (matcl[char3])

“Invoices” relation:
 <invnr[char5]; itmnr[char3]; dates[date8]; dateb[date8]; cuscl[char3]; custom[char5];

matcl[char3]; matnr[char6]; quasu[dec15,3]; sunit[char3]; amodc[dec15,2]; dcurr[char3]>
 {<12345; 001; 20111031; 20111101; 003; 74100; 047; 000471; 2,000; PC; 20,00; EUR >
 <12345; 002; 20111031; 20111101; 003; 74100; 047; 000473; 1,000; PC; 5,00; EUR>}

τE: Determination of sales organization (slorg[char2]), conversion of amount into local
currency according to sales date

“Invoices (SD)” relation:
 <invnr[char5]; itmnr[char3]; dates[date8]; slorg[char2]; cuscl[char3]; custom[char5];

matcl[char3]; matnr[char6]; quasu[dec15,3]; sunit[char3]; amolc[dec15,2]; lcurr[char3]>
 {<12345; 001; 20111031; 01; 003; 74100; 047; 000471; 2,000; PC; 28,00; CHF >
 <12345; 002; 20111031; 01; 003; 74100; 047; 000473; 1,000; PC; 7,00; CHF>}

τE: Determination of controlling area (conar[char2]), conversion of quantity into base unit +
amount into controlling currency according to booking date

“Invoices (CO)” relation:
 <invnr[char5]; itmnr[char3]; dateb[date8]; conar[char2]; cuscl[char3]; custom[char5];

matcl[char3]; matnr[char6]; quabu[dec15,3]; bunit[char3]; amocc[dec15,2]; ccurr[char3]>
 {<12345; 001; 20111101; C3; 003; 74100; 047; 000471; 1,000; PK; 32,00; USD >
 <12345; 002; 20111101; C3; 003; 74100; 047; 000473; 1,000; PK; 8,00; USD>}

τ(Σ): Aggregation on level month (according to sales date) + customer

“Billing (SD)” relation:
 <month[date6]; slorg[char2]; cuscl[char3]; custom[char5]; amolc[dec15,2]; lcurr[char3]>
 <201110; 01; 003; 74100; 35,00; CHF >}

τ(Σ): Aggregation on level month (according to booking date) + customer

“Billing (CO)” relation:
 <month[date6]; conar[char2]; cuscl[char3]; custom[char5]; amocc[dec15,2];

ccurr[char3]>
 {<201111; C3; 003; 74100; 40,00; USD >}

Corporate data memory (CDM): Any data being extracted into the DW are stored in
their original state; for easier re-use, some administrative information can be added
(e.g., data origin, timestamp). Hence, data are available in the DW, even when they
are already deleted, changed or archived, and thus not recoverable in the source
system. Hereby, an utmost autarky and flexibility from source systems is achieved.
Moreover, re-loading data causes organizational problems, such as necessary down-
times; now, sets of data can be rebuilt without accessing the source system. It is
advisable to extract not only actual necessary data from one source, but all data that
are possibly needed and useful for analysis. Thus, the data-base represents a reservoir

Persistence in Enterprise Data Warehouses 11

for unpredictable requirements – without re-modeling data flows from source systems
and extracting data that are missing in DW. By definition, use of these data is rare, so
that storage mediums can be slower and cheaper ones (s. [SA09], [W+11]).

3.1.4 Data Availability

Information warranty: Many EDW have to guarantee a defined degree of data
availability (often even 24 hours a day) for the users; hence, critical data are stored
redundantly (next to the cases described as “data availability” above). In general,
techniques for ensuring high availability of DB systems, such as backups and
mirrored systems, are valid for DW, too1.
Moreover, a special scenario to increase availability by avoiding inconsistent (i.e.
implausible) data is the following. Two sets of data (A, B) are updated equally, yet
subsequently with identical data. Due to the amount of new data, the update processes
the data in packages, setting a commit after each package; however, the new data is
plausible only as a whole. As soon as data set A is updated, set B is base of reporting.
Thereby, an older, but plausible set of data is offered. After being successfully
updated, set A is reporting base again, while set B is updated.
A special case poses individual safety; that means, individual needs for a more secure
feeling causes data storing – redundantly or slightly changed – mostly in the data mart
area. Yet, as this is rather a psychological than a technical or design issue, we will not
go into details.

Better performance for data access: Still one of the most common and important
reasons for storing data is faster access for reporting, analyses, et cetera. Data are
stored redundantly and usually in a more aggregated format. Higher data access
performance is mostly enabled by reducing the volume of data, which can be
achieved by creating additional materialized views or by transforming data onto a
more aggregated summarization level. For instance, data on detail level day can be
reduced by about factor 30 when aggregating it on level month. A main problem, next
to the verification of consistence, is to create materialized views that fit to users’
behavior and requirements. Disregarding fixed reports, it is very difficult to anticipate
how data are used; analyses vary, extend, and change according to business
requirements. See also for related topics in Section 5.

3.1.5 Laws and Provisions

Corporate governance: Data are stored according to compliance rules of corporate
governance. Managerial decisions usually base on pieces of information that are
generated from DW data, distributed via reports and analyses. As such decisions often
have expansive outcome for the company, traceability of decisions is of enormous
importance. Therefore, data, on which decisions have been taken, must be stored
separately to discharge duties of care. Additionally, not only the analyses’ results can
be important, but also the numbers and indicators on which the result has been
created. In this case, the whole set of data has to be stored, too.

Laws and provisions: Data persistence can also be caused by laws and provisions.

1 Although, such measures are usually more complex, due to the size of DW.

Persistence in Enterprise Data Warehouses 12

In Germany, legal obligations to retain data in the finance area are defined in the
Commercial Code (§§257, 239 HGB), the Fiscal Code (§§147,146 AO), and other
provisions [Law1]. For instance, balance sheet, profit and loss account, and annual
report are listed, with safekeeping periods of ten years. Moreover, organizational
liabilities for financial institutes base on the German Banking Act (§25a KWG) and
related provisions [Law2], and also affects corporate governance. Another aspect is
product liability, which includes test reports, for instance. In the Product Liability
Act, obligations to retain data is not explicitly defined, but result from stated
safekeeping periods of ten years (§13 ProdHaftG; [Law3]). Further details, including
compilations of safekeeping periods for different business areas, can be found for
instance in [BW07], [HH11], and [ZE09]. In Austria and Switzerland, similar legal
obligations with slightly different periods of safekeeping exist (cf., [Law4], [Law5]).
We limit our investigations to these three countries, and are convinced that similar
provisions are valid in other countries, too.

Persistence often means redundant data, because source and transformed target data
sets are stored. As transformations are usually not unique, keeping only the target data
means loss of information. The resulting effort does not only concern hardware
aspects; for example, maintenance for keeping data consistently and so on, has to be
taken into account to calculate total costs. The operation of productive DW
necessarily means potential for conflicts which arises from requirements of data usage
– such as reporting and analysis – and time and effort to create the necessary
prerequisites. In the following, we briefly describe these requirements and their
consequences. As mentioned above, EDW are data sources for several applications.
Huge data volume results from manifold requirements that have to be satisfied; to
mention are mainly three: detailed information needs finest granularity, historical
information requires lots of previous data, and the broad range of data being collected
(e.g., for data mining). This amount of data has to be prepared for its intended use,
which includes data redundancy. The management of redundant data not only requires
disk space, but also additional effort for keeping the aggregated data up-to-date and
consistently regarding to the raw data (cf. [Le03]). As this effort takes time, the data‘s
availability is limited. Moreover, the defined data set constrains the flexibility of data
concerning new needs of analysis or usage in general. A complex staging process
with several layers of persistent data is in opposite of a fast availability of data. This
topic also includes the question of how to combine a „near-real-time“ concept into a
DW system, where particularly the updating of master data has to be taken into
account (cf. [La04]).

3.2 Grouping of Persistence Purposes

DW architectures usually base on conventional DB with star, snowflake, or galaxy
schema as its main logical data model; see for instance [Le03], [KR02]. Basically,
these models offer an adequate performance when accessing data for on-line
analytical processing (OLAP). However, the amount of data enforces to build up
materialized views and aggregated summarization levels for enabling reporting and
analysis within passable response times – including consequences we describe in
Section 3.1.5.
A decision for persisting data cannot just be made by “disk space and updating costs

Persistence in Enterprise Data Warehouses 13

versus gain in performance”. One has to take the purpose of the data’s storing into
account, to define whether it is only helpful, rather essential, or even mandatory. In
order to identify the necessity of persistence, we classify such reasons into two
groups: mandatory and essentially persistence.
Mandatory persistence applies to data that has to be stored according to laws and
regulations of corporate governance. It also holds for data that cannot be replaced
because they are not available any longer or cannot be reproduced due to changes of
transformation rules. Lastly, data that are required for other data’s transformation
must be stored if simultaneous availability is not ensured.
Essential persistence can be classified into certain sub-categories. Firstly, data those
are available or reproducible in principle. However, the effort for reproducing - in
time and/or resources - is too high (e.g., for archived or costly transformed data). Of
course, the definition of “too high” is very subjective and needs clarified. Another
group is data which is stored to simplify the maintenance or operation of the
warehouse or defined applications - such as planning data and data marts for specially
authorized users. A third group of data is persistent due to the warehouse’s conceptual
design: single version of truth and corporate memory. Fourthly, responsibility for
guaranteeing information leads to data storage for safety reasons. Finally, there is data
redundantly stored for performance purposes – often the biggest volume.
For a complete grouping of persistence purposes by necessities, we refer to Table 1
(note: column “DS” (decision step) values are commented in the next sub-section).

Table 1. Persistence purposes, grouped by necessities

Purpose Necessity Category DS

Data availability Mandatory - 2
Changing transformation rules Mandatory - 3
Addicted transformation Mandatory - 1
Corporate governance Mandatory - 1
Laws and provisions Mandatory - 1
Source system decoupling Essential High effort 5
Extensive data recreation Essential High effort 6
Complex data transformation Essential High effort 7
Constant data-base Essential Simplification 5
Data lineage Essential Simplification 5
Complex, different data Essential Simplification 5
En-bloc data supply Essential Simplification 5
Complex authorization Essential Simplification 5
Single version of truth Essential Design 4
Corporate data memory Essential Design 4
Information warranty Essential Safety 5
Data access performance Essential Performance 7

3.3 Decision for Data Persistence

A decision whether to store data must take into consideration the reason for
persistence and its necessity. A regulation drives into persistence, for instance;
basically, this is the case for all mandatorily stored data. The decision is more difficult
for essentially stored data, as the reason cannot be quantified clearly. This is valid for
categories high effort, simplification, safety, and performance. Solely design reasons
are distinct identifiers for data storage. Figure 9 shows a decision flow for persistence

Persistence in Enterprise Data Warehouses 14

of any data. It is simplified, because rather fuzzy terms, such as “complex” and
“frequently”, have to be specified dependent on the domain and application scenario.

Figure 9: Persistence Decision Flow

The number of each step (1–7, in brackets) is used to assign purposes, shown in
column DS (decision step) of Table 1. The first three steps deal with mandatorily
stored data, which are not under consideration when deciding about persistence. For
essentially stored data, indicators to come to a decision are much diversified. For
instance, when the DW design includes a corporate data memory, these data have to
be stored. In case the reproduction or transformation of data is complex (in time
and/or resources), factors such as data volume, frequency of data access and data
changes, and warranties for availability have to be taken into account. Moreover, the
basis for the decision changes, due to the fact that data persistence has more than one
reason. For example, as the connection to one source system is excellent, data would
not be stored solely due to source system decoupling. Yet, as the transformation is

Is persistence

regulated?

Are source data

replaceable?

Are data

reproducible?

yes

no

no

no

yes

Do data represent

SVoT or CDM?

Does persistence

enable high

simplification/safety?

Is data reproduction

complex?

Is data

transformation

complex?

Persistence

not necessary

no

no

Are data used

frequently?

Persistence

necessary
no

no

no

yes

yes

yes

yes

yes

yes

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Persistence in Enterprise Data Warehouses 15

partly complex, data is stored anyhow.

4 Outlook: Persistence in In-Memory

The approach of column-oriented DB systems is not new (cf. [CK85], [T+79]), and
came into special focus in the DW community (e.g., [S+05a], [S+08]) because of their
advantages regarding data compression and read access ([A+06], [Ab08]). Since some
years, there are column-oriented in-memory-techniques used in commercial Data
Warehouse products (e.g., “SAP NetWeaver® Business Warehouse Accelerator”
[L+06], [Ro09] and “ParAccel Analytical DatabaseTM” [PA10]), for speeding up
system’s response time. Such techniques lead to the ability to both, load and query on
data in terabyte volumes with good performance. Latest announcements even
propagate installations embodying both, on-line transactional processing (OLTP) and
OLAP - with up to 50 TB data in main memory [Pl09]; SanssouciDB [PZ11] is to
mention here.
Those changes within technology lead to the question, in which degree persistence in
IMDB-based EDW is required or necessary. It is suggested that no data additional to
the source data have to be stored, but any data (e.g., for analysis) are computed on-
the-fly ([Pl09], [PZ11]). Yet, this is only valid for some of the above-mentioned
reasons. In this context we discuss databases that fully support ACID, including
durability – such as IBM’s solidDB [IC10], TimesTen by Oracle [OC09], SAP’s
HANA [SA11], or MonetDB [MD11]. Hence, persistence is clearly to be
distinguished from data storage in volatile memory, where data are lost when the DB
shuts down. As mentioned, such considerations are less important in DW based on
conventional DB, as lower performance of the DB motivates storage.

4.1 Evaluation of Persistence in IMDB

All data which are not stored mandatorily come into focus for the discussion of
persisting data in IMDB-based DW. Especially, this concerns data that have been
additionally stored for enhancing access performance or due to complex
transformation. That does not mean that all additional persistence is obsolete due to
processing speed in such systems – as to en-bloc data supply or the creation of a
constant data-base for planning, it will be even more valid. IMDB snapshot
mechanisms, as defined in [KN10], do not keep data constantly for a required period
of about hours or days. The essential here is not fast supply with new data, but the
creation of an unchanged data-base over a certain period of time. Timestamps in in-
memory concepts (cf. [PZ11] and [KN10]), can be an approach that requires deeper
examination. However, it is not applicable for replacing a CDM if data come from
different source systems – as usual for EDW. Moreover, reasons for persistence such
as complex authorizations and data lineage are still valid.
Experiences show that technical limits come almost always earlier than expected, so
system resources will not be sufficient for the given tasks. Performance that was
satisfactory once will not be enough soon. The potential to access huge data volumes
will raise new needs; new requirements will arise, the amount of data will grow.
Under this assumption, it is to validate in IMDB-based DW, whether it is more

Persistence in Enterprise Data Warehouses 16

reasonable to store data in an adequate format rather than computing it repeatedly on-
the-fly. This is especially true for data that are often accessed and change rarely, such
as closed periods of end-of-year-/quarter/month in financial accounting.
Another question in this context is the format, in which data are stored; which level of
transformation is optimal for storage, can persistence layers be avoided? Hereby, the
format has to be determined, that offers flexible usage and avoids repeated, identical
transformation. This can be found out by cost-based scenarios for measuring runtime,
such as:
Given a set of raw data (R), that must be processed via multiple transformations (τn;
n={1,2,3}) to make it ready for analysis (A). We have to compare for finding out
whether it is more effective to store data persistently (px) after each transformation, to
keep it in volatile memory (vx), or to compute it on-the-fly:

(1) R � τ1 + p1 � τ2 + p2 � τ3 + A

(2) R � τ1 + p1 � τ2 + v2 � τ3 + A

(3) R � τ1 + p1 � τ2 � τ3 + A

(4) R � τ1 + v1 � τ2 � τ3 + A

(5) R � τ1 � τ2 � τ3 + A

Further indicators that have to be examined for deciding whether transformed data
have to be materialized are:
Data Volume: Is the amount of data this big, that its preparation for usage (reporting,
analyses, and others) cannot be done on-the-fly any longer?
Frequency of data usage: Is data so often accessed (for reporting, analyses, and
others), that the benefit of additional materialization outweighs its cost.
Frequency of data changes: Is data changed so often (by updating, inserting, or
deleting), that the maintenance effort for keeping downstream views consistently is
less than their returns. Furthermore, how complex are these changes?
Evaluations in this area are valid in DW based on conventional DB, too. However, we
expect that performance of an IMDB leads to on-the-fly transformation rather than
redundant persistence.
Some IMDB, as for instance [OC09] and [IC10]), enable to specify different
requirements for durability for certain DB area, so that non-mandatorily persistent
data are available in volatile memory only. We interpret this as a two level concept of
data storage. Of course, such data are available only unless the DB is shut down. As
this happens quite rarely, the data maintenance costs are low. Exemplary, this
scenario can be preferable for determination of customers’ RFM attributes (recency,
frequency, and monetary). These attributes are a common way of customer
categorization in CRM business; see for example [St09] for more details. The
determination (shown in Figure 10) is based on customer master data (from CRM
systems), point-of-sale receipts (from POS systems as boutiques), and order and
invoice data (from ERP systems). In short: RFM attributes have to be determined and
checked for new customers and whenever new receipts, orders, or invoices flowing
into the system. The RFM determination is done by an application, including
selections, computations, and currency conversions, with lookups to control data, et
cetera. Computed attributes are not only used in the DW, but also transferred back to
the CRM system. In practice, a fast changing, but reproducible data-base of several
millions of customers with tens of transactions each, one can realize that storing the

Persistence in Enterprise Data Warehouses 17

results in volatile memory is preferable.

Figure 10: Determination of RFM Attributes

We expect that data, that is stored redundantly due to performance aspects in
conventional DB, will vanish. Higher access speed in in-memory allows
transformation of data on-the-fly, especially data with simple transformation logic
(aggregations, joins, etc.). In consequence, materialized views will become virtual
views.

4.2 Bases of Decision-Making – an Evaluation Approach

As mentioned above, decision-making on data persistence is a complex process.
Moreover, it is often ambiguous and the basis for decisions changes frequently. In
order to cope with such problems, we develop an approach that we briefly describe in
the following. Our approach contains data stored of any reason for persistence,
including mandatorily (cf. Sections 3.2f).
Our rating system, as basis for decision-making, consists of indicators and
measurements that are results of combinations of quantifiers (i.e., criteria, factors, and
key-figures):

• A criterion c is a natural number, validated with 0 or 1: c ∈{0,1}.

• A factor f is a real number between 0 and 1: f ∈ [0, 1] := {x ∈ℝ | 0 ≤ x ≤ 1}.

• A key-figure k is a real number: k ∈ℝ.

CRM-System

RFM

Determination

DW-System

Dataflow

ERP-SystemPOS-Systems

Dataflow
(simplified)

POS Receipts Sales/CS Orders Sale/CS Invoices

Customer

Master Data

Control

Data

Persistence in Enterprise Data Warehouses 18

Such validation indicators are classified in definable and designated ones. The first
category is sub-divided into calculable, measurable, appreciable, and assessable, the
latter into external and internal figures. The subcategories again are defined as distinct
(calculable, measurable, and external) and fuzzy (appreciable, assessable, and
internal). See Figure 11 for a complete overview.

Figure 11: Classification of Validation Quantifiers

Definable in our context means, that the figures can be defined related to the
particular case. For instance, computable figures are data volume in a data cube or
frequency of data changes of a table, whereas the frequency of usage of data in a cube
is rather a measurable one. Yet, calculations in this field have to deal with
approximate values. Increase of data volume is an appreciable figure, examples for
assessable ones are the operational availability of reports (e.g., “99.9%”), or the
warranty of reporting performance (e.g., “< 5s for 95% of reports”).
In contrast, designated figures are fixed to a specific value; for example, that means
externally set by laws and provisions or internally by the requirement for a CDM or a
SVoT of data.

Figure 12: Performance/Effort Comparison Example

As mentioned before, the format, in which the data is stored best, is another problem
in our discussion. Figure 12 shows such an example; the question is whether to access
data of table A directly for report R, or to define another level of persistence (data
cube B). Both options have their pros and cons. Data access from cube B will
probably be faster than the access from A, but it requires more cost for additional
update. The most important factors in the comparison of data access (i.e., arrows AR
and BR) are time of data selection (Tσ), time of data transformation (Tτ), and
frequency of data querying (FQ). Disregarding additional factors, such as indexing,
one can define the following formulas:

• AR = ∑ �
�
� (Tσ(AR) + Tτ(AR)) � (Tσ(AR) + Tτ(AR)) * FQ � R = 1

Validation Quantifiers

Definable Designated

Computable Measurable Appreciable Assessable External Internal

Distinct
Fuzzy

B

R

AB

BR

ARA

Persistence in Enterprise Data Warehouses 19

• BR = ∑ �
�
� (Tσ(BR) + Tτ(BR)) � (Tσ(BR) + Tτ(BR)) * FQ � R = 1

Data supply from A to B (AB) is characterized by the frequency of loading new data
(F∆), time of updating (TU), and time and frequency of cube’s reorganization (TR, FR):

• AB = ∑ �
�
� (Tσ (AB) + Tτ(AB) + TU) + (TR * FR)

The comparison of the results (i.e. indicators) has to be validated with respect to
reporting performance and its guaranteed factor.
Such models are exemplarily for computable indicators. Next to the ones mentioned
above, there are others to name in this technical context, such as data volume (with
impact on disc space and processing time) and time for indexing and creating
materialized views. Further indicators are requirements for data, such as timeliness,
quality, consistency, and plausibility. Figures like effort for maintenance and for data
validation are rather hard to quantify. This is also valid for questions that are brought
up before: what does “high”, “complex”, and “frequently” mean (s. Figure 9)?
Moreover, the flexibility of a data set has to be considered; that means, how manifold
is its possible use regarding reporting and other applications.
Within this discussion, approaches of the multi-criteria decision analysis (MCDA)
seem to offer good foundations to face such problems; see [Sc91] for an introductive
compendium. Especially its variants, namely classical utility analysis (cf. [De08]) and
Saaty’s Analytic Hierarchy Process (AHP; [Sa80]), pledge fruitful adoption here (cf.
[BK10]). Moreover, the use of Balanced Scorecard (BSC) methods (s. [KN96]) is a
further step towards an evaluation framework.

5 Related Work

Due to the broadness of the discussed questions in this paper, related works comes
from several research areas; we define four main categories:

• DW architecture and design,

• ETL, data transformation and information integration,

• maintenance and cost-based evaluation of materialized views, and

• in-memory databases.

In the field of DW architecture and design, [WA05] provides an overview and
comparison between main architectural approaches. Many papers deal with reference
architectures for DW systems. As mentioned in Section 2, such architectures define
three main areas that represent the aspects of data handling: data acquisition in the
staging area, data processing in the basis data-base, and data provision in the data
cubes or marts. While naming differs, the meaning remains the same. [DM88] expects
data in a declared format and differentiates its design into layers of raw data and
enhanced data on a detailed and a summary level. [PR96] defines a generic DW
architecture, where a separated DW is filled with transformed and integrated data; as
a variation, the DW is split into a central EDW and data-mart-like Business DW.
[MB00], [CG06], [Ze08], and [BG09] pursue the three-layer approach of staging area,
basis data-base, and data marts with a slightly different naming, yet without going too

Persistence in Enterprise Data Warehouses 20

deep into details of data consistence. With regard to DW, [In02] defines an
architecture with three detail levels: atomic DW (current detailed data), departmental
or data mart (slightly summarized data), and individual (highly summarized data);
besides, older detailed data can be accessed. In contrast, the approach of [KR02]
defines DW as a collection of process-based data marts, filled directly from the
staging area. Moreover, [SA09] introduces a “Layered, Scalable Architecture” (cf.
Section 2), which explicitly deals with questions of what type of data processing and
transformation is done on which layer. Although data persistence is directly
influenced by the system’s layout, it is not discussed deeply in those publications –
mainly due to the reason that lower performance of conventional DB motivates
storage. That means, due to the database’s limited performance for data processing,
persistence on each layer, or even after each level of transformation, is implicit.
Much work in the area of ETL is done for instance by [V+02], [Si03], [S+05b], who
define conceptual and logical workflow-models for ETL processes in order to
optimize them. Compared to this, our work does not focus on the “E” (extraction) part
from external source systems. Hence, problems in this area are not discussed deeply
here, such as data cleansing, and DW refreshment anomalies. The mentioned work,
however, only takes batch job processing as a basis, and limits its examinations on the
first target in the DW basis data base, considering it as the final one. Yet, much
processing time is necessary during succeeding “TL” (transforming, loading) jobs via
several layers of data transformation with regard to business requirements, for
instance (cf. explanations for SVoT in Section 3.1.3). In our understanding, this is an
important factor within the overall processing effort in today’s EDW applications.
[P+09] propagates ETL-less on-the-fly transformation for a system that covers both,
transactional processing and reporting. Thereby, data integration is disregarded,
which is however an explicit raison d'être of DW. Data transformation within OLAP
databases is researched by [G+97], [LS97], and [LT09], who describe aggregation
operators, summarizability and formal frameworks for aggregation. Such findings can
act as an indicator for decision-making for our work. [LN07] covers the complex field
of information integration. However, none of the mentioned works deeply outline
complexity in terms of consuming time and resources within their studies, and effects
and necessity for persistence are not considered.
Data persistence in DW is closely related to materialized views and their incremental
maintenance, in conjunction with incremental loading of DW. Several authors work
on these topics. [GL95], [P+02], and [GM06] work on incremental maintenance of
materialized views within a single DB system. In their work, updates are usually
defined as pairs of delete and insert, whereby a clear possibility for data history,
another raison d'être of DW, is prevented. In reference to work about view
maintenance in DW environments (e.g., [Z+95], [G+96], [Qu96], [A+97], and
[L+01]), we have to agree with [JD08], as the conception of data warehousing, taken
as a basis in these papers, varies from real-world ones in DW refreshment cycles, data
sources’ query capabilities, and significance of previous data in DW applications.
[JD08], [JD09], and [BJ10] work on incremental view maintenance with focus on
DW, where [JD08] points out the affinity of incremental loading of DW and
incremental maintenance of materialized views, as both deal with “incremental
updates of physically integrated data”. As such techniques are still important in data
warehousing, they are also to be considered in our work. However, similar to

Persistence in Enterprise Data Warehouses 21

mentioned works on ETL, the authors do not pay attention to the reasons for
persistence and they limit themselves to the first data storage in DW. A cost-based

model to identify optimal materialized views is proposed in [Ac04]. Such a model can
be used as a foundation, but has to be combined with and enhanced by ambiguous
figures.
In consideration of in-memory databases, only those are considered which fully
support ACID criteria. In this area, mainly the MonetDB project [MD11] as well as
works by [Pl09], [P+09], [KN10], and [PZ11] are to mention. Moreover, there are
already some commercially offered IMDB: TimesTen by Oracle [OC09], IBM’s
solidDB [IC10], and SAP HANA [SA11]. As processing power of such systems in
first place allows investigating reasons for persistence deeply, progress in this
technology is directly influencing our research.
Today, databases that are used for commercial data warehousing, offer tools for cost-
based modeled data access optimization that support decisions whether to create
indexes and materialized views. As far as we know, the question of decision support
indicators for data persistence in DW has not been discussed apart of those models.
Nevertheless, this question will become more important for EDW based on IMDB.

6 Conclusion and Outlook

Enterprise Data Warehouses are complex systems with specific requirements on data,
which can be met best by a dedicated, layered architecture. The need for data
persistence in such systems has to be defined by the data’s purpose. We classify
reasons for persistence into mandatory, essential, and helpful. Based on this, we come
up to decide whether to persist data or not in such installations. As this perception
becomes more important regarding EDW on in-memory databases, we give an
outlook on possible scenarios.
Persistent data also exist in EDW systems running on IMDB, not only mandatory but
also essential data. However, a large amount of data is only stored in volatile memory
or computed on-the-fly. Furthermore, the question arises, in which format data are
stored. The answer cannot easily be found; in fact, it is a multidimensional decision of
several facts, such as efforts of transformation, storing, and updating, number and
time of calls, and number and time of updates.
Future work will include the definition of figures and indicators that support decisions
whether to store data persistently in IMDB-based EDW. This contains both, distinct
and fuzzy ones; for instance, comparisons of runtime and maintenance effort of data
stored in certain format to find out if a decision to store data is computable or at least
supportable. Our aim is to provide a set of definable, quantifiable, and weighted
indicators to specify formulas that support practical decision making in the field of
EDW data persistence in IMDB. Within this context, we expect that methods of
MCDA, such as AHP, and the BSC approach seem suitable tools to adapt.

Persistence in Enterprise Data Warehouses 22

References

[Ab08] D.J. Abadi: “Query Execution in Column-Oriented Database Systems”; PhD Thesis,
Massachusetts Institute of Technology; 2008.

[Ac04] T.L. Achs: “Optimierung der materialisierten Sichten in einem Datawarehouse auf
der Grundlage der aus einem ERP-System übernommenen operative Daten”; PhD
Thesis, Wirtschaftsuniversität Wien; 2004.

[A+97] D. Agrawal, A. El Abbadi, A. Singh et al.: “Efficient View Maintenance at Data
Warehouses“; in: SIGMOD’97 Proceedings, pp.417-427; 1997.

[A+06] D.J. Abadi, S.R. Madden, M.C. Ferreira: “Integrating Compression and Execution in
Column-Oriented Database Systems“; in: SIGMOD`06 Proceedings, pp.671-682;
2006.

[BG09] A. Bauer, H. Günzel (eds.): “Data-Warehouse-Systeme”; d-punkt, Heidelberg, 3rd
edition; 2009.

[BJ10] A. Behrend, T. Jörg: “Optimized Incremental ETL Jobs for Maintaining Data
Warehouses”; in: IDEAS’10 Proceedings, pp.216-224; 2010.

[BK10] B. Berendt, V. Köppen: “Improving Ranking by Respecting the Multidimensionality
and Uncertainty of User Preferences”; in: G. Armano, M. de Gemmis, G. Semeraro et
al. (eds.): “Intelligent Information Access”, pp. 39-56; Springer, 2010.

[BW07] Bundesministerium für Wirtschaft und Technologie (BMWI): “Handlungsleitfaden
zur Aufbewahrung elektronischer und elektronisch signierter Dokumente“; on:
www.bmwi.de/BMWi/Redaktion/PDF/Publikationen/Dokumentationen/doku-564,
property=pdf,bereich=bmwi,sprache=de,rwb=true.pdf {01.10.2011}; 2007.

[CG06] P. Chamoni, P. Gluchowski (eds.): „Analytische Informationssysteme“, Springer,
Berlin, 3rd edition; 2006.

[CK85] G.P. Copeland, S.N. Khoshafian: “A Decomposition Storage Model”; in:
SIGMOD`85 Proceedings, pp.268-279; 1985.

[CW03] Y. Cui, J. Widom: “Lineage Tracing for General Data Warehouse Transformations”;
in: The VLDB Journal 12(1), pp.41-58; 2003.

[De08] D. Delić: “Ein multiattributives Entscheidungsmodell zur Erfolgsbewertung nicht-
kommerzieller Webportale”; PhD Thesis; Freie Universität Berlin; 2008.

[De09] B.A. Devlin: “Business Integrated Insight (BI²)”; on:
www.9sight.com/bi2_white_paper.pdf {01.10.2011}; 2009.

[DM88] B.A. Devlin, P.T. Murphy: “An architecture for a business and information system”;
in: IBM Systems Journal 27(1), pp.60-80; 1988.

[FS07] O. Fischer, M. Semrock: “Datenbank Internet“; on: http://wi.f4.htw-berlin.de/users/
morcinek/DWH-Arbeiten/student/Datenbank_Internet.pdf {01.10.2011}; 2007.

[GL95] T. Griffin, L. Libkin: “Incremental Maintenance of Views with Duplicates”; in:
SIGMOD’95 Proceedings, pp.328-339; 1995.

[GM06] H. Gupta, I.S. Mumick: Incremental Maintenance of Aggregate and Outerjoin
Expressions”; in: Information Systems (31/6), pp.435-464; 2006.

[G+96] A. Gupta, H.V. Jagadish, I.S. Mumick: “Data Integration using Self-Maintainable
Views”; in: EDBT’96 Proceedings, pp.140-144; 1996.

[G+97] J. Gray, S. Chaudhuri, A. Bosworth et al.: “Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals”; in: Data Mining and
Knowledge Discovery 1(1), pp.29-53; 1997.

[HH11] Handelskammer Hamburg: “ABC der Aufbewahrungsfristen von
Geschäftsunterlagen in Steuerrecht und Handelsrecht”; on:
www.hk24.de/recht_und_fair_play/steuerrecht/abgabenordnung/365506/aufbewahrun
gsfristen.html {01.10.2011}; 2011.

[IC10] IBM Corporation: IBM solidDBTM; on: www.ibm.com/software/data/soliddb
{01.10.2011}; 2010.

Persistence in Enterprise Data Warehouses 23

[In02] W.H. Inmon: “Building the Data Warehouse”; Wiley Inc., New York, 3rd edition;
2002.

[JD08] T. Jörg, S. Deßloch: “Towards Generating ETL Processes for Incremental Loading”;
in: IDEAS’08 Proceedings, pp.101-110; 2008.

[JD09] T. Jörg, S. Deßloch: “Near Real-Time Data Warehousing Using State-of-the-Art ETL
Tools”; in: BIRTE’09 Proceedings, pp.100-117; 2009.

[KN96] R.S. Kaplan, D.P. Norton: “The Balanced Scorecard: Translating Strategy into
Action”; Harvard Business Press, Cambridge; 1996.

[KN10] A. Kemper, T. Neumann: “HyPer: Hybrid OLTP&OLAP High PERformance
Database System“; on:
www3.in.tum.de/research/projects/HyPer/HyperTechReport.pdf {01.10.2011}; 2010.

[KR02] R. Kimball, M. Ross: “The Data Warehouse Toolkit”; Wiley Publishing Inc.,
Indianapolis, 2nd edition; 2002.

[La04] J. Langseth: “Real-Time Data Warehouses: Challenges and Solutions“; on:
www.dssresources.com {01.10.2011}; 2004.

[Law1] Handelsgesetzbuch (HGB; 01.03.2011); Abgabenordnung (AO; 08.12.2010);
“Grundsätze ordnungsmäßiger DV-gestützter Buchführungssysteme“ (AO_GoBS;
07.11.1995); “Grundsätze zum Datenzugriff und zur Prüfbarkeit digitaler Unterlagen
(GDPdU; 16.07.2001).

[Law2] Kreditwesengesetz (KWG, 01.03.2011); “Mindestanforderungen an das
Risikomanagement (MaRisk, 15.12.2010).

[Law3] Produkthaftungsgesetz (ProdHaftG, 19.07.2002).
[Law4] Bundesabgabenordnung (BAO, 07.05.2008)
[Law5] Obligationenrecht (OR, 01.01.2011); Mehrwertsteuergesetz (MWSTG, 01.06.2011);

Geschäftsbücherverordnung (GeBüV, 18.06.2002)
[Le03] W. Lehner: “Datenbanktechnologie für Data-Warehouse-Systeme“; dpunkt,

Heidelberg; 2003.
[LN07] U. Leser, F. Naumann: “Informationsintegration“; dpunkt, Heidelberg; 2007
[LS97] H.-J. Lenz, A. Shoshani: “Summarizability in OLAP and Statistical Data Bases”; in:

SSDBM’97 Proceedings, pp. 132-143; 1997.
[LT09] H.-J. Lenz, B. Thalheim: “A Formal Framework of Aggregation for the OLAP-OLTP

Model”; in: Journal of Universal Computer Science 15(1), pp. 273-303; 1997.
[L+01] K.Y. Lee, J.H. Son, M.H. Kim: “Efficient Incremental View Maintenance in Data

Warehouses”; in: CIKM’01 Proceedings, pp.349-357; 2001.
[L+06] T. Legler, W. Lehner, A. Ross: “Data Mining with the SAP NetWeaver BI

Accelerator“; in: VLDB`06 Proceedings, pp.1059-1068; 2006.
[MB00] H. Muksch, W. Behme (eds.): “Das Data Warehouse-Konzept“; Gabler, Wiesbaden,

4th edition; 2000.
[MD11] MonetDB B.V.: “MonetDB – Column Store Features”; on:

http://www.monetdb.org/Home/Features {01.10.2011}; 2011.
[OC09] Oracle Corporation: “Extreme Performance Using Oracle TimesTen In-Memory

Database”; on: www.oracle.com/technetwork/database/timesten/overview/wp-
timesten-tech-132016.pdf {01.10.2011}; 2009.

[PA10] ParAccel: “PARACCEL ANALYTIC DATABASETM“; on: www.paraccel.com/wp-
content/uploads/2010/07/PA_DS.pdf {01.10.2011}; 2011.

[Pl09] H. Plattner: “A Common Database Approach for OLTP and OLAP Using an In-
Memory Column Database”; in: SIGMOD’09 Proceedings, pp.1-2; 2009.

[PR96] V. Poe, L.L. Reeves: “Building a Data Warehouse for decision support”; Prentice
Hall PTR, Upper Saddle River; 1996.

[PZ11] H. Plattner, A. Zeier: “In-Memory Data Management“; Springer, Berlin; 2011.
[P+02] T. Palpanas, R. Siddle, R. Cochrane et al.: “Incremental Maintenance for Non-

Distributive Aggregate Functions”; in: VLDB’02 Proceedings, pp.802-813; 2002

Persistence in Enterprise Data Warehouses 24

[P+09] H. Plattner, A. Bog, J. Schaffner et al.: “ETL-less Zero Redundancy System and
Method for Reporting OLTP Data” (US 2009/0240663 A1); US Patent Application
Publication; 2009.

[Qu96] D. Quass: “Maintenance Expressions for Views with Aggregation”; in: VIEWS’96
Proceedings, pp.110-118; 1996.

[Ro09] J.A. Ross: “SAP NetWeaver® BI Accelerator”; Galileo Press Inc., Boston; 2009.
[Sa80] T. Saaty: “The Analytic Hierarchy Process for Decisions in a Complex World“;

McGraw-Hill, New York; 1980.
[SA09] SAP AG: “PDEBW1 - Layered Scalable Architecture (LSA) for BW“; Training

Material; 2009.
[SA11] SAP AG: “SAP® In-Memory Appliance (SAP HANATM); on:

www.sap.com/platform/in-memory-computing/in-memory-appliance/index.epx
{01.10.2011}; 2011.

[Sc91] C. Schneeweiß: “Planung 1: Systemanalytische und entscheidungstheoretische
Grundlagen”; Springer, Berlin; 1991.

[Si03] A. Simitsis: “Modeling and managing ETL processes”; in: VLDB’03 PhD Workshop;
2003.

[S+05a] M. Stonebraker, D.J. Abadi, A. Batkin et al.: “C-Store: A Column-oriented DBMS”;
in: VLDB`05 Proceedings, pp.553-564; 2005.

[S+05b] A. Simitsis, P. Vassiliadis, T. Sellis: “Optimizing ETL Processes in Data
Warehouses”; in: ICDE’05 Proceedings, pp.564-575; 2005.

[S+08] D. Slezak, J. Wróblewski, V. Eastwood et al.: “Brighthouse: An Analytic Data
Warehouse for Ad-hoc Queries“; in: PVLDB 1(2), pp.1337-1345; 2008.

[St09] J. Stafford: „RFM: A Precursor of Data Mining”; on: www.b-eye-
network.com/view/10256 {01.10.2011}; 2009.

[T+79] M.J. Turner, R. Hammond, P. Cotton: “A DBMS for large statistical databases”; in:
VLDB`79 Proceedings, pp.319-327; 1979.

[V+02] P. Vassiliadis, A. Simitsis, S. Skiadopoulos: “Conceptual Modeling for ETL
Processes”; in: DOLAP’02 Proceedings, pp.14-20; 2002.

[WA05] H.J. Watson, T. Ariyachandra: “Data Warehouse Architectures: Factors in the
Selection and the Success of the Architectures”; on:
www.terry.uga.edu/~hwatson/DW_Architecture_Report.pdf {01.10.2011}; 2005

[Wi08] R. Winter: “Why Are Data Warehouses Growing So Fast?”; on: www.b-eye-
network.com/print/7188 {01.10.2011}; 2008.

[W+01] E. Weippl, O. Mangisengi, W. Essmayr et al.: “An Authorization Model for Data
Warehouses and OLAP“; in: „Workshop on Security in Distributed Data
Warehousing“, New Orleans; 2001.

[W+11] T. Winsemann, V. Köppen, G. Saake: “Advantages of a Layered Architecture for
Enterprise Data Warehouse Systems“; in: CSDM’11 Proceedings, accepted; 2011.

[Ze08] T. Zeh: “Referenzmodell für die Architektur von Data-Warehouse-Systemen
(Referenzarchitektur)“; on: www.tzeh.de/doc/gse-ra.ppt {01.10.2011}; 2008.

[ZE09] Zentralverband Elektrotechnik- und Elektronikindustrie e.V. (ZVEI): “Archivierung
von Dokumenten”; on:
www.zvei.org/fachverbaende/electronic_components_and_systems/publikationen/dru
ckansicht.html?tx_ZVEIpubFachverbaende_pi1%5Bpointer%5D=1&cHash=86e89cd
8796b7229ef81e63c237dc321&type=1 {01.10.2011}; 2009.

[Zu11] T. Zurek: “NoSQL Options in Analytics and Data Warehousing”; on: www.analytic-
processing.blogspot.com/2011/04/nosql-options-in-analytics-and-data.html,
{01.10.2011}; 2011.

[Z+95] Y. Zhuge, H. Garcia-Molina, J. Hammer et al.: “View Maintenance in a Warehousing
Environment”; in: SIGMOD’97 Proceedings, pp.417-427; 1995.

