Modulkatalog

für die Studiengänge

Computervisualistik (B.Sc. & M.Sc.),
Informatik (B.Sc. & M.Sc.),
Ingenieurinformatik (B.Sc. & M.Sc.),
Wirtschaftsinformatik (B.Sc. & M.Sc.),
Digital Engineering (M.Sc.),
Data and Knowledge Engineering (M.Sc.)
und
Visual Computing (M.Sc.)

an der
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

vom Sommersemester 2024
Inhaltsverzeichnis

Adaptronik ... 13
Advanced Database Models .. 15
Advanced Topics in Databases .. 17
Advanced Topics in Geometric Mechanics .. 19
Advanced Topics in Machine Learning .. 21
Advanced Topics in Networking ... 23
Advanced Topics of KMD ... 25
Algorithm Engineering .. 27
Algorithmen und Datenstrukturen .. 29
Allgemeine Elektrotechnik ... 31
Allgemeine Psychologie I .. 33
Allgemeine Psychologie II ... 35
Alternative Energien / Regenerative Elektroenergiequellen .. 37
Anatomie und Physiologie .. 39
Angewandte Bildverarbeitung .. 41
Anwendungssysteme ... 43
Applied Deep Learning ... 45
Applied Discrete Modelling .. 47
Argumentationstheorie in der Künstlichen Intelligenz ... 49
Assistenzrobotik .. 51
Augmented & Virtual Reality ... 53
Ausgewählte Algorithmen der Computergraphik .. 55
Ausgewählte Probleme in Human Factors .. 57
Automated Reasoning .. 58
Automatisierungssysteme .. 60
Automatisierungstechnik .. 62
Bachelorarbeit .. 64
Bachelorarbeit (dual) .. 66
Bachelor-Projekt .. 68
Bayessche Netze .. 70
Betriebliches Rechnungswesen ... 72

Seite 2 Inhaltsverzeichnis
Bildungswissenschaft und audiovisuelle Kommunikation .. 73
Biochemie .. 75
Bioinformatik .. 77
Biologische Psychologie ... 79
Biometrics and Security .. 81
Biometrics Project .. 83
Bürgerliches Recht ... 85
Business Informatics Research: perspectives and outcomes .. 87
CAx-Anwendungen .. 88
CAx-Grundlagen .. 90
Chemie für STK ... 92
Clean Code Development .. 94
Cloud School ... 96
CNC-Programmierung .. 98
Computational Creativity ... 99
Computational Fluid Dynamics .. 101
Computational Geometry .. 103
Computational Intelligence in Games ... 105
Computer Aided Geometric Design ... 107
Computer Tomographie - Theorie und Anwendung ... 109
Computer-Assisted Surgery .. 111
Computergestützte Diagnose und Therapie .. 113
Computergraphik I .. 115
Computernetze ... 117
Computernetze 2 .. 119
Computerspiele als kulturelles Phänomen .. 121
Data Management for Engineering Applications ... 123
Data Mining – Einführung in Data Mining ... 125
Data Mining I - Introduction to Data Mining ... 127
Data Mining II - Advanced Topics in Data Mining ... 129
Data Science with R .. 131
Data Warehouse-Technologien ... 134

Seite 3 Inhaltsverzeichnis
Einleitung in Digitale Spiele .. 136
Einleitung in die Wissensrepräsentation .. 137
Einleitung in die Wirtschaftsinformatik ... 139
Einleitung in die Verfahrenstechnik ... 141
Einleitung in die Systemtheorie .. 147
Einleitung in die Kommunikationstechnik .. 150
Einleitung in die Informatik ... 152
Effiziente Programmierung und Ein-/Ausgabe .. 153
Deutsch als Fremdsprache A2 BiBa .. 154
Deutsch als Fremdsprache B1 BiBa .. 155
Deutsch als Fremdsprache B2 BiBa .. 157
Digital Engineering Project ... 159
Digital Information Processing .. 161
Digitale Medien im Unterricht (Medienpraxis) .. 163
Digitale Planung in der Automatisierungstechnik .. 165
Digitaler Schaltungsentwurf mit FPGAs ... 167
Digitalhandwerk .. 169
Distributed Data Management ... 171
Effiziente Programmierung und Ein-/Ausgabe .. 173
Einführung in das Wissenschaftliche Rechnen .. 175
Einführung in die Angewandte Ontologie ... 176
Einführung in die Betriebswirtschaftslehre ... 177
Einführung in die Digital Humanities .. 179
Einführung in die Informatik .. 181
Einführung in die Kommunikationstechnik .. 183
Einführung in die Systemtheorie .. 185
Einführung in die Verfahrenstechnik .. 186
Einführung in die Volkswirtschaftslehre .. 187
Einführung in die Wirtschaftsinformatik .. 189
Einführung in Digitale Spiele .. 191

Seite 4 Inhaltsverzeichnis
Einführung in Managementinformationssysteme ... 193
Electronic System Level Modeling .. 195
Elektrische Antriebe I (Elektrische Antriebssysteme I) .. 197
Elektrische Antriebe II ... 199
Elektrische Energienetze II - Energieversorgung .. 201
Embedded Bildverarbeitung ... 203
English TopUp BiBa .. 205
Entdecken häufiger Muster ... 206
Entwurf und Simulation von Mikrosystemen ... 208
Entwurf, Organisation und Durchführung eines Programmierwettbewerbs 210
Erziehungswissenschaft: Interaktive Medien als sozial-kulturelle Phänomene 212
Estimation for Autonomous Mobile Robots .. 214
Ethische Herausforderungen im Digitalen Zeitalter .. 216
Eudaimonic Interaction Design .. 219
Evolutionäre Algorithmen .. 221
Evolutionary Multi-Objective Optimization .. 223
Experimentelle Ansätze in der neurobiologischen Lernforschung 226
Fabrikplanung (Factory Operations) .. 228
Fertigungsplanung ... 230
Filmseminar Informatik und Ethik .. 232
Finite-Element-Methode ... 234
Flow Visualization ... 236
Fortgeschrittene Methoden der Medizinischen Bildanalyse .. 238
Funktionale Programmierung - fortgeschrittene Konzepte und Anwendungen 240
Fuzzy-Systeme ... 242
Game Design – Grundlagen .. 244
Game Development Project .. 246
Game Engine Architecture .. 248
Geometrische Datenstrukturen .. 250
GPU Programmierung ... 252
Grundlagen der Arbeitswissenschaft ... 254
Grundlagen der Bildverarbeitung .. 256
Grundlagen der Biologie... 258
Grundlagen der C++ Programmierung ... 260
Grundlagen der Computer Vision ... 262
Grundlagen der Fahrzeugtechnik ... 264
Grundlagen der Fertigungslehre .. 265
Grundlagen der Informationstechnik für CV, BIT 266
Grundlagen der Maschinenelemente ... 268
Grundlagen der nutzerorientierten Frontend-Entwicklung 269
Grundlagen der Theoretischen Informatik 271
Grundlagen der Theoretischen Informatik II 273
Grundlagen der Theoretischen Informatik III 275
Grundlagen des Industriedesigns ... 277
Grundlagen verteilter Sensordatenfusion 279
Grundlegende Algorithmen und Datenstrukturen 281
Grundzüge der Algorithmischen Geometrie 283
Hardwarenahe Rechnerarchitektur .. 285
Hardwarenahe Rechnerarchitektur für CV, BIT 287
HealthTEC Innovation Design .. 289
Heterogeneous Computing ... 292
Hörakustik .. 294
Human Factors ... 296
Human-Centred Approaches and Technologies 298
Human-Centred Artificial Intelligence .. 300
Human-Centred Natural Language Processing 302
Hybride Discrete Event Systems .. 304
Idea Engineering ... 306
IDE-Projekt I-III ... 308
Image Coding ... 309
Immunologie ... 311
Implementierungstechniken für Software-Produktlinien 313
Industrial 3D Scanning – Theory and Best-practises 315
Industriedesign-Designprojekt ... 317
<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Generative Models</td>
<td>377</td>
</tr>
<tr>
<td>Lindenmayer-Systeme</td>
<td>379</td>
</tr>
<tr>
<td>Liquid Democracy -> "Digitalisierung der Politik - Politik der Digitalisierung"</td>
<td>380</td>
</tr>
<tr>
<td>Logic for knowledge representation</td>
<td>382</td>
</tr>
<tr>
<td>Logik</td>
<td>384</td>
</tr>
<tr>
<td>Logik für Wirtschaftsinformatiker</td>
<td>386</td>
</tr>
<tr>
<td>Logik II: Theorie und Anwendungen</td>
<td>388</td>
</tr>
<tr>
<td>Logistikprozessanalyse</td>
<td>389</td>
</tr>
<tr>
<td>Mainframe Computing</td>
<td>391</td>
</tr>
<tr>
<td>Management of Global Large IT-Systems in International Companies</td>
<td>392</td>
</tr>
<tr>
<td>Marketing</td>
<td>394</td>
</tr>
<tr>
<td>Maschinelles Lernen</td>
<td>395</td>
</tr>
<tr>
<td>Masterarbeit</td>
<td>397</td>
</tr>
<tr>
<td>Materialflusstechnik II</td>
<td>399</td>
</tr>
<tr>
<td>Materialflusstechnik und Logistik</td>
<td>401</td>
</tr>
<tr>
<td>Mathematik I (Lineare Algebra und analytische Geometrie)</td>
<td>403</td>
</tr>
<tr>
<td>Mathematik II (Algebra und Analysis)</td>
<td>404</td>
</tr>
<tr>
<td>Mathematik III (Stochastik, Statistik, Numerik, Differentialgleichungen)</td>
<td>406</td>
</tr>
<tr>
<td>Mechanische Schwingungen, Struktur- und Maschinendynamik</td>
<td>408</td>
</tr>
<tr>
<td>Mechatronik der Werkzeugmaschinen</td>
<td>410</td>
</tr>
<tr>
<td>Mechatronische Aktoren und Sensoren</td>
<td>412</td>
</tr>
<tr>
<td>Medizinische Bildverarbeitung</td>
<td>413</td>
</tr>
<tr>
<td>Medizinische Visualisierung</td>
<td>415</td>
</tr>
<tr>
<td>Mesh Processing</td>
<td>417</td>
</tr>
<tr>
<td>Methoden des Virtual Engineering in der Mechanik</td>
<td>419</td>
</tr>
<tr>
<td>Middleware für verteilte industrielle Umgebungen</td>
<td>420</td>
</tr>
<tr>
<td>Mikrobiologie</td>
<td>422</td>
</tr>
<tr>
<td>Mikroskopie und Werkstoffcharakterisierung</td>
<td>424</td>
</tr>
<tr>
<td>Mikrostruktur der Werkstoffe</td>
<td>426</td>
</tr>
<tr>
<td>Mobilkommunikation</td>
<td>428</td>
</tr>
<tr>
<td>Modeling with population balances</td>
<td>430</td>
</tr>
<tr>
<td>Modellierung</td>
<td>432</td>
</tr>
</tbody>
</table>
Modellierung und Expertensysteme in der elektrischen Energieversorgung 434
Modellierung und Simulation von Computernetzen .. 436
Molekulare Immunologie ... 438
Molekulare Zellbiologie ... 439
Multimedia and Security ... 440
Multimedia Retrieval .. 442
Musik Information Retrieval ... 444
Nachhaltigkeit ... 446
Narrative Visualization ... 448
Neural-symbolic Integration ... 450
Neuronale Netze ... 452
Nichtlineare Finite Elemente ... 454
Numerical Methods for Visual Computing .. 456
Optimal Control ... 458
Parallel Programming - M ... 460
Parallel Storage Systems ... 462
Parallele Programmierung ... 464
Praktikum ... 466
Praktikum IT Sicherheit ... 467
Principles and Practices of Scientific Work and Soft Skills .. 469
Process control ... 470
Produktdatenmodellierung .. 471
Programmierparadigmen .. 473
Prozessmanagement .. 474
Qualitätsmanagementsysteme (FIN) .. 476
Rechnerunterstützte Ingenieursysteme ... 478
Recommenders ... 480
Regelungstechnik .. 482
Regelungstechnik I .. 484
Robust Geometric Computing ... 485
Robuste Messgrößenreglung .. 487
Schlüsselkompetenzen I&II .. 489
Schlüsselkompetenzen I&II (dual) ... 491
Schlüsselkompetenzen III .. 493
Scientific Computing II ... 494
Scientific Machine Learning for Simulations ... 496
Scientific Writing ... 498
Scrum-in-Practice ... 499
Segmentation Methods for Medical Image Analysis ... 501
Selected Chapters of IT Security 1 .. 503
Selected Chapters of IT Security 2 .. 505
Selected Chapters of IT Security 3 .. 507
Selected Chapters of IT Security 4 .. 509
Selected Topics in Image Understanding .. 511
Seminar Computational Intelligence .. 513
Seminar Managementinformationssysteme ... 515
Seminar Predictive Maintenance .. 517
Seminar Robotik .. 519
Seminar: Text-Retrieval/Mining .. 521
Service Engineering .. 522
Sichere Systeme ... 523
Simulation dynamischer Systeme .. 525
Simulation Project ... 527
Simulation und Entwurf leistungselektronischer Systeme ... 529
Software Defined Networking ... 531
Software Development Project .. 533
Software Engineering & IT-Projektmanagement ... 535
Software Engineering (SPO bis 9/2023) ... 537
Software Engineering for technical applications ... 539
Software Testing ... 540
Software-Development for Industrial Robotics .. 542
Softwareprojekt .. 544
Softwareprojekt (dual) ... 546
Softwareprojekt RIOT OS .. 548

Seite 10 Inhaltsverzeichnis
Inhaltsverzeichnis

Seite 11 Inhaltsverzeichnis

Sozialwissenschaftliche Filmanalyse ... 549
Speicherprogrammierbare Antriebssteuerungen ... 551
Spezifikationstechnik .. 553
Sprachverarbeitung .. 554
Startup Engineering I .. 556
Startup Engineering II - Develop an MVP .. 558
Startup Engineering III – From Idea to Business ... 559
Steuerung großer IT-Projekte .. 560
Steuerungstechnik .. 562
Strömungsmechanik I ... 564
Student Conference ... 565
Swarm Intelligence .. 566
System-on-Chip ... 568
Technische Aspekte der IT-Sicherheit ... 570
Technische Darstellungslehre .. 572
Technische Informatik I ... 573
Technische Informatik II .. 575
Technische Logistik ... 577
Technische Mechanik 1 ... 578
Technische Mechanik 2/3 ... 579
Technische Mechanik I ... 580
Telematik und Identtechnik ... 582
Theoretische Elektrotechnik .. 584
Theorie elektrischer Leitungen .. 586
Three-dimensional & Advanced Interaction ... 588
Topics in Algorithmics ... 590
Trainingsmodul Schlüssel- und Methodenkompetenz (dual) (SPO bis 09/2023) .. 592
Trainingsmodul Schlüssel- und Methodenkompetenz (SPO bis 09/2023) .. 594
Transaction Processing ... 596
Transport phenomena in granular, particulate and porous media 598
Umweltmanagementinformationssysteme .. 600
Usability und Ästhetik ... 602
<table>
<thead>
<tr>
<th>Verfahrenstechnische Projektarbeit</th>
<th>604</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtuelle Inbetriebnahme</td>
<td>605</td>
</tr>
<tr>
<td>Visual Analytics</td>
<td>607</td>
</tr>
<tr>
<td>Visual Analytics in Health Care</td>
<td>609</td>
</tr>
<tr>
<td>Visualization</td>
<td>611</td>
</tr>
<tr>
<td>Visuelle Analyse und Strömungen in medizinischen Daten</td>
<td>613</td>
</tr>
<tr>
<td>Visuelle Kommunikation für Digitale Medien</td>
<td>615</td>
</tr>
<tr>
<td>VLBA – Cloud DevOps Technologies</td>
<td>617</td>
</tr>
<tr>
<td>VLBA 1: Systemarchitekturen</td>
<td>619</td>
</tr>
<tr>
<td>VR und AR in industriellen Anwendungen</td>
<td>621</td>
</tr>
<tr>
<td>VR/AR-Technologien für die Produktion</td>
<td>623</td>
</tr>
<tr>
<td>Wahlpflichtfach FIN Schlüssel- und Methodenkompetenz</td>
<td>625</td>
</tr>
<tr>
<td>Werkzeuge für das wissenschaftliche Arbeiten</td>
<td>627</td>
</tr>
<tr>
<td>Wissenschaftliches Individualprojekt</td>
<td>629</td>
</tr>
<tr>
<td>Wissenschaftliches Rechnen IV: Tensoren, Differentialformen und Vektoranalyse</td>
<td>631</td>
</tr>
<tr>
<td>Wissenschaftliches Rechnen V: Strukturerhaltende Simulationen und Geometrische Mechanik</td>
<td>633</td>
</tr>
<tr>
<td>Wissenschaftliches Seminar</td>
<td>635</td>
</tr>
<tr>
<td>Wissenschaftliches Seminar (dual)</td>
<td>637</td>
</tr>
<tr>
<td>Wissenschaftliches Team-Projekt</td>
<td>639</td>
</tr>
<tr>
<td>Wissenschaftliches Teamprojekt KMD</td>
<td>641</td>
</tr>
<tr>
<td>Wissenschaftliches Teamprojekt Managementinformationssysteme</td>
<td>643</td>
</tr>
<tr>
<td>Wissensmanagement – Methoden und Werkzeuge</td>
<td>645</td>
</tr>
</tbody>
</table>
Adaptronik schafft eine neue Klasse technischer, elastomechanischer Systeme, die sich durch Einsatz neuer aktivierbarer Materia lien und schneller digitaler Regler an unterschiedlichste Umgebungsbedingungen selbsttätig anpassen können. Adaptronik hat 4 Zielfelder technischer Anwendungen:
 - Konturanpassung durch elastische Verformung
 - Vibrationsminderung durch Körperschallinterferenz
 - Schallreduktion durch aktive Maßnahmen
 - Lebensdauererhöhung durch strukturintegrierte Bauteilüberwachung

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übersicht über Adaptronik, Anwendungen aus der Forschung</td>
</tr>
<tr>
<td>Strukturintegrierbare Sensorik und Aktorik</td>
</tr>
<tr>
<td>Strukturkonforme Integration von Aktoren und Sensoren</td>
</tr>
<tr>
<td>Zielfeld Konturanpassung: Methoden des Morphing.</td>
</tr>
<tr>
<td>Zielfeld Vibrationsunterdrückung: Körperschallinterferenz, Til-</td>
</tr>
<tr>
<td>gung, Kompensation</td>
</tr>
<tr>
<td>Zielfeld Schallreduktion: Konzepte der Aktiven</td>
</tr>
<tr>
<td>SchallreduktionAutonome Systeme - Konzepte des Energy-</td>
</tr>
<tr>
<td>HarvestingKonzepte integrierter Bauteilüberwachung</td>
</tr>
<tr>
<td>Regelung</td>
</tr>
<tr>
<td>Zuverlässigkeit / Robustheit</td>
</tr>
<tr>
<td>Begleitendes Laborpraktikum:</td>
</tr>
<tr>
<td>Selbständige Durchführung von Experimenten zu Adaptronik</td>
</tr>
<tr>
<td>Messungen, Auswertung und Präsentation der Ergebnisse</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>Teilnahme am Labor, mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Foundations of query languages (OQL, SQL:2003, XPath/XQuery, etc.) and query processing for non-relational data models

| Studien-/ Prüfungsleistungen: | Examination requirements: Participation and active involvement in the course and the exercises
Final examination: written (120 minutes) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Advanced Topics in Databases</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Advanced Topics in Databases</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. David Broneske</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods II</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Classes (2 hours per week)</td>
</tr>
<tr>
<td></td>
<td>Exercises in the lab and project work (2 hours per week)</td>
</tr>
<tr>
<td></td>
<td>Homework (124 h):</td>
</tr>
<tr>
<td></td>
<td>Further Studies</td>
</tr>
<tr>
<td></td>
<td>Realization of the exercises and the student projects</td>
</tr>
<tr>
<td></td>
<td>Preparation for the final examination</td>
</tr>
<tr>
<td></td>
<td>180h (56h contact hours + 124h self-study)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Knowledge about database foundations and about principles of in-ternal database operations</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>In the lecture students will be made familiar with most recent technological developments in data management. The first goal is to enable the attendees to use these new technologies in their professional careers in industry. Furthermore, the lecture focuses on aspects currently addressed in scientific research being on the verge to wide usage in current applications, and this way, enabling students to participate in academic and industrial research.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Topics of the lecture will frequently change in accordance with current research directions in the database community and represent cutting-edge aspects as for instance indexing and storage techniques for new applications and data types, data management for embedded devices and sensor networks, self-management capabilities of database management systems, etc.</td>
</tr>
</tbody>
</table>
| Studien-/Prüfungsleistungen: | Exam requirements: Participation and active involvement in the course and the exercises
Final examination: Oral |
<p>| Medienformen: Literatur: | http://www.iti.cs.uni-magdeburg.de/iti_db/lehre/advdb/ |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Advanced Topics in Geometric Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Advanced Topics in Geometric Mechanics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Advanced Topics in Geometric Mechanics</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GeomechAdvanced</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Jun.-Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Fundamentals of Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>3 Credit Points = 90 h (28h Präsenzzeit + 62h selbstständige Arbeit), Notenskala gemäß Prüfungsordnung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>-</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Strongly recommended: Wissenschaftliches Rechnen IV und V (Lagrangian and Hamiltonian geometric mechanics and reduction for systems on Lie groups)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>In the seminar we will discuss recent papers from the literature on discrete geometric mechanics and the necessary background from the continuous theory. A particular emphasis will be on fluids and their structure preserving discretizations, with applications to computer graphics and weather and climate simulations.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Understanding of structure preserving discretizations of fluids and the trade-offs involvedAdvanced concepts from geometric mechanics (e.g. momentum maps, cotangent lift as a Poisson algebra homomorphism)</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Oral Exam</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beispielprogramme</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Advanced Topics in Machine Learning</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Advanced Topics in Machine Learning</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>ATiML</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester; M.Sc. ab 2. Semester; M.Sc. ab 3./ 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Data and Knowledge Engineering</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Andreas Nürnberger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>wöchentliche Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>wöchentliche Übung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Bearbeitung von Übungs- und Programmier-Aufgaben;</td>
</tr>
<tr>
<td></td>
<td>Nachbereitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>180h (56h Präsenzzeit in den Vorlesungen & Übungen + 124h</td>
</tr>
<tr>
<td></td>
<td>selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Informatik, Grundlagen des Maschinellen</td>
</tr>
<tr>
<td></td>
<td>Lernens, Programmierkenntnisse für die praktischen Übungen</td>
</tr>
<tr>
<td></td>
<td>von Vorteil</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Vertieftes Verständnis für ausgewählte Probleme und Kon-zepte</td>
</tr>
<tr>
<td></td>
<td>maschineller Lernverfahren</td>
</tr>
<tr>
<td></td>
<td>Kenntnis von weiterführenden Datenstrukturen und Algo-</td>
</tr>
<tr>
<td></td>
<td>rithmen des Maschinellen Lernens</td>
</tr>
</tbody>
</table>

Seite 21 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Befähigung zur problemabhängigen Auswahl und Analyse komplexer Algorithmen des Maschinellen Lernens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Ausgewählte Themen aus dem Bereich Maschinelles Lernen wie spezielle Lernverfahren (z.B. SVM) oder spezielle Problem (wie z.B. massive Datensätze)</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>Leistungen:</td>
</tr>
<tr>
<td>Bearbeitung der Übungsaufgaben</td>
</tr>
<tr>
<td>Bearbeitung der Programmieraufgaben</td>
</tr>
<tr>
<td>Erfolgreiche Präsentation der Ergebnisse in den Übungen</td>
</tr>
<tr>
<td>Prüfung: mündlich (auch für Schein)</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Powerpoint, Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Technische Informatik
FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. INGINF - WPF Technische Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Vorlesungen (2h pro Woche)
Theoretische und praktische Übungen (2h pro Woche)
Hausaufgaben (124h):
Weitere Studien
Umsetzung der Übungen
Vorbereitung für die finale Prüfung |
| Kreditpunkte: | 6 Kreditpunkte = 180h (56h Kontaktstunden + 124h Selbststudium)
Noten gemäss Prüfungsbestimmungen |
<p>| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Die Vorlesung Computernetze wird empfohlen |
| Angestrebte Lernergebnisse: | Studierende erhalten einen vertieften Einblick in verschiedene fortgeschrittene Themen im Bereich Netze. |
| Inhalt: | Der Kurs behandelt fortgeschrittene Themen aus dem Bereich Netze, u.a.:Overlay Netze für Content Delivery, z.B. P2P, BitTorrent, CDNs, Caching, Overlay Video Streaming, Distributed Hash Tables (DHT), z.B. Kademlia, Blockchains, Kryptowährungen und Bitcoin, Ethereum und Smart Contracts, Sichere Netzwerkarchitekturen, z.B. SCION, Congestion Control, z.B. QUIC und Multipath-QUIC |
| Studien-/Prüfungsleistungen: | Schriftliche Prüfung |</p>
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lehrbücher gemäß Ankündigung. Folienskript der Vorlesung und Artikelkopien nach Bedarf.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Advanced Topics of KMD</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Advanced Topics of KMD</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>AdvKMD</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lehrstuhl Angewandte Informatik / Wirtschaftsinformatik II (Arbeitsgruppe KMD)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Myra Spiliopoulou</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods II</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten und selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Selbständige Bearbeitung eines anspruchsvollen wissenschaftlichen Thema</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit in einem Kleinprojekt, z.B. für die Aufbereitung und Analyse von Daten zum vorgegebenen Thema (optional, themenabhängig)</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit (inkl. Beratungstermine) für die Betreuung und Besprechung des Themas, Kontrolle des Fortschritts bei der Bearbeitung</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung einer Präsentation</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung der Hausarbeit, zu der auch die Inhalte der Präsentation gehören</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundlagen zu Data Mining</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
</tbody>
</table>
Selbstständige Durchführung von folgenden Aufgaben:
- Erwerb von Kenntnissen zu ausgewählten Themen von "Knowledge Management & Discovery" (Beispiele von Teilgebieten unter "Inhalt")
- Einarbeitung in einem anspruchsvollen wissenschaftlichen Gebiet
- Erwerb relevanter Literatur zum Thema, Gegenüberstellung von Literaturinhalten anhand von eigens abgeleiteten Vergleichskriterien
- Zusammenfassung und kritische Würdigung von Literatur zum vorgegebenen Thema, sowohl in mündlicher als auch in schriftlicher Form

Inhalt:	Fortgeschrittene Themen zum Forschungsgebiet "Knowledge Management & Discovery", darunter Themen aus den Teilgebieten: Stream Mining (Stream) Recommenders Medical Mining Opinion (Stream) Mining Active & Semi-supervised (Stream) Learning
Studien-/ Prüfungsleistungen:	Prüfung: Hausarbeit
Medienformen:	Literatur: Wissenschaftliche Literatur zu jedem Seminarthema; der Erwerb von weiterer relevanten Literatur gehört zu den Aufgaben der Studierenden im Rahmen des Seminars
Modulbezeichnung: Algorithm Engineering
engl. Modulbezeichnung: Algorithm Engineering
ggf. Modulniveau:
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: M.Sc. ab 1. Semester
Semesterlage: Wintersemester
Modulverantwortliche(r): Professur für Theoretische Informatik / Algorithmische Geometrie
Dozent(in): Prof. Dr. Stefan Schirra
Sprache: englisch
Zuordnung zum Curriculum:
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Models
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik
Lehrform / SWS:
Arbeitsaufwand:
Präsenzzeiten:
4 SWS Vorlesung
Selbstständige Arbeit:
Nachbereitung der Vorlesungen, Projekt
180h = 4 SWS = 56h Präsenzzeit + 124h selbstständige Arbeit
Kreditpunkte: 6
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen:
Grundkenntnisse in Algorithmen und Datenstrukturen
Angestrebte Lernergebnisse:
Lernziele & erworbene Kompetenzen:
Fähigkeit zur Anwendung der Methoden des Algorithm Engineering.
Fähigkeit zum Entwurf und zur Durchführung von Computerexperimenten zur Algorithmenanalyse.
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Kluft zwischen Theorie und Praxis des Algorithmenentwurfs, experimentelle Algorithmik, realistische Computermodelle, C++-Software-Bibliotheken, zertifizierende Algorithmen, Fallstudien.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung: Bearbeitung des Projektes (Fallstudie) Prüfung: mündlich</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>
| Literatur: | Müller-Hannemann, Schirra (eds): Algorithm Engineering, Springer LNCS 5971
C. McGeoch: Algorithm Engineering |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Algorithmen und Datenstrukturen</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Algorithms and Data Structures</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>AuD</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professoren der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Christian Rössl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Gestalten</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Tutorium</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzeiten:</td>
</tr>
<tr>
<td></td>
<td>- 4 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>- 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>- 1 SWS Tutorium</td>
</tr>
<tr>
<td></td>
<td>10 Credit Points = 300 h (64h + 28h + 14h = 106h Präsenz + 194h selbstständige Arbeit)</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>- Lösung der Übungsaufgaben und Prüfungsvorbereitung, Programmierwettbewerb</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>10</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>- Erwerb von Grundkenntnissen über die Konzepte der Informatik</td>
</tr>
<tr>
<td></td>
<td>- Befähigung zu Lösung von algorithmischen Aufgaben und zum Design von Datenstrukturen</td>
</tr>
<tr>
<td></td>
<td>- Vertrautheit mit der informatischen Denkweise beim Problemlösen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Listen</td>
</tr>
<tr>
<td></td>
<td>- Bäume, Balancierte Suchbäume</td>
</tr>
<tr>
<td></td>
<td>- Hashverfahren</td>
</tr>
<tr>
<td></td>
<td>- Graphen</td>
</tr>
<tr>
<td></td>
<td>- Dynamische Programmierung</td>
</tr>
<tr>
<td></td>
<td>- Entwurf von Algorithmen</td>
</tr>
<tr>
<td></td>
<td>- Suche in Texten</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Prüfung: Klausur 120 Min.</td>
</tr>
<tr>
<td>Prüfungsvorleistungen: erfolgreiches Bearbeiten der Übungsaufgaben (Votierung) und des Programmierwettbewerbs</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>- Saake/Sattler: Algorithmen und Datenstrukturen</td>
<td></td>
</tr>
<tr>
<td>- Goodrich/Tamassia: Data Structures and Algorithms in Java</td>
<td></td>
</tr>
<tr>
<td>- Sedgewick: Algorithms</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Allgemeine Elektrotechnik</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Electrical engineering and electronics</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Elektrotechnik / Elektrische Aktorik, Professur für Leitungselektronik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Elektrotechnik FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 3SWS Selbstständiges Arbeiten: 3SWS</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>10</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Mathematik I-II, Physik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und zu erwerbende Kompetenzen: Erwerb der Kenntnisse und Fähigkeiten, die für das Verständnis elektrotechnischer Zusammenhänge notwendig sind</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Übungsschein, Praktikumschein, Klausur</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Allgemeine Psychologie I</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>General Psychology I</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Stefan Pollmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Stefan Pollmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Allgemeine Visualistik - Psychologie
FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing |
| Lehrform / SWS: | Vorlesung |
| Arbeitsaufwand: | Präsenzzeiten: 2 SWS (28 Std.), Lernzeiten: 92 Std.
Gesamt: 120 Std.
je 2CP pro Vorlesung (auch einzeln abrechenbar) |
| Kreditpunkte: | 4 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |
| Inhalt: | Allgemeine Psychologie I/1:
Wahrnehmung
Handlung
Allgemeine Psychologie I/2:
Kognition
Sprache |
<p>| Studien-/ Prüfungsleistungen: | Klausuren jeweils am Ende des Semesters. |
| Medienformen: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Allgemeine Psychologie II</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>General Psychology II</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Stefan Pollmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Stefan Pollmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Allgemeine Visualistik - Psychologie</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td></td>
<td>ggf als Allgemeine Psychologie II/1 und II/2</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>2 Vorlesungen, je einstündig</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeiten: 2 SWS (28 Std.), Lernzeiten: 92 Std.</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 120 Std. je 2CP pro Vorlesung (auch einzeln abrechenbar)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Allgemeine Psychologie I</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Allgemeine Psychologie II/1:</td>
</tr>
<tr>
<td></td>
<td>Lernen</td>
</tr>
<tr>
<td></td>
<td>Gedächtnis</td>
</tr>
<tr>
<td>Allgemeine Psychologie II/2:</td>
<td>Motivation</td>
</tr>
<tr>
<td></td>
<td>Emotion</td>
</tr>
<tr>
<td></td>
<td>Volition</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Klausuren jeweils am Ende des Semesters.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Alternative Energien / Regenerative Elektroenergiequellen</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Alternative Energien / Regenerative Elektroenergiequellen</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. Zbigniew Antoni Styczynski (FEIT-IESY)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Zbigniew Antoni Styczynski (FEIT-IESY)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>3 SWS = 150h (42h Präsenzzeit +108h selbständige Arbeit)</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeiten: wöchentliche Vorlesung 2 SWS, wöchentliche</td>
</tr>
<tr>
<td></td>
<td>Übungen 1 SWS,</td>
</tr>
<tr>
<td></td>
<td>Selbständiges Arbeiten: Nachbereitung der Vorlesung,</td>
</tr>
<tr>
<td></td>
<td>Lösung der Übungsaufgaben und Prüfungsvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Regelungstechnik, Steuerungstechnik, Ereignisdiskrete Systeme</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Die Lehrveranstaltung vermittelt Kenntnisse zur</td>
</tr>
<tr>
<td></td>
<td>Energieerzeugung aus regenerativen Energiequellen. Die</td>
</tr>
<tr>
<td></td>
<td>Studenten lernen die wichtigsten regenerativen</td>
</tr>
<tr>
<td></td>
<td>Energiequellen: Solarenergie, Wasserkraft, Windkraft und</td>
</tr>
<tr>
<td></td>
<td>Biomasse kennen und es werden die Nutzungsmöglichkeiten</td>
</tr>
<tr>
<td></td>
<td>der regenerativen verfügbaren Energiepotentiale aufgezeigt.</td>
</tr>
<tr>
<td></td>
<td>Weiterhin werden Kenntnisse zur Energiespeicherung, zu</td>
</tr>
<tr>
<td></td>
<td>Brennstoffzellen und zu Problemen der Netzintegration</td>
</tr>
<tr>
<td></td>
<td>regenerativer Energieanlagen und Energiespeicher</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung, Elektrische Energiesysteme, Energiebegriffe</td>
</tr>
<tr>
<td></td>
<td>Grundlagen des regenerativen Energieangebots, Energiebilanz</td>
</tr>
<tr>
<td></td>
<td>Photovoltaische Stromerzeugung</td>
</tr>
<tr>
<td></td>
<td>Stromerzeugung aus Windkraft</td>
</tr>
<tr>
<td></td>
<td>Stromerzeugung aus Wasserkraft</td>
</tr>
<tr>
<td></td>
<td>Brennstoffzellen</td>
</tr>
<tr>
<td></td>
<td>Elektrische Energiespeicher</td>
</tr>
<tr>
<td></td>
<td>Netzbetrieb lokaler Energierzeuger</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Anatomie und Physiologie</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Anatomy and Physiology</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Friedemann Awiszus (Lehrimport aus der FME)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Friedemann Awiszus (Lehrimport aus der FME)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Medizintechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>2 SWS 150h (28h Präsenzzeit in der Vorlesung 122h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

Seite 39 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Klausur (90 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Angewandte Bildverarbeitung</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Angewandte Bildverarbeitung</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ABV</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Neuro-Informationstechnik, Professur für Technische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>apl. Prof. Dr.-Ing. habil. Ayoub Al-Hamadi</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Bildinformationstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeiten:</td>
<td></td>
</tr>
<tr>
<td>Sommersemester: 2 SWS Seminar</td>
<td></td>
</tr>
<tr>
<td>Wintersemester: 1 SWS Seminar + 1 SWS Softwareprojekt</td>
<td></td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Projekarbeit (Vortragsvorbereitung + Softwarevorbereitung)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>7 Credit Points = 210h (56h Präsenzzeit + 154h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Bildverarbeitung (FIN), Signalorientierte Bildverarbeitung (FEIT)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen: Die Studierenden sollen ihr Wissen auf dem Gebiet der Angewandten Bildverarbeitung mittels vorgegebener oder evtl. auch selbst gewählter Spezialthemen vertiefen und praktisch anwenden</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>In der Lehrveranstaltung werden spezielle Themen beispielsweise aus der aktuellen Forschung auf dem Gebiet der Bildverarbeitung behandelt. Dabei handelt es sich u. a. um die Schwerpunkte Bildkorrektur, 3D- Vermessung, Bildsequenzverarbeitung, Gesichtsanalyse, Informationsfusion, neuronale Netze, biologische und medizinische Anwendungen. Im ersten Teil erfolgt dabei innerhalb von Gruppen die Vorbereitung eines Vortrags über ein spezielles Thema, welcher anschließend vor den Seminarpartizipanten gehalten wird. Im zweiten Teil erfolgt eine praktische softwaremäßige Umsetzung</td>
</tr>
<tr>
<td>Studien- / Prüfungsleistungen:</td>
<td>mündliche Prüfung: kumulativ: Vorträge & 1 Softwarelösung</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe Script</td>
</tr>
</tbody>
</table>

spezieller Probleme der Bildverarbeitung. Dies dient auch der Vertiefung der Programmierkenntnisse.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Anwendungssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Business Application Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>AWS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester; B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Klaus Turowski</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Anwenden</td>
</tr>
<tr>
<td></td>
<td>BSc KWL, WPF WI 1.2, WI 2.1, WI 2.2</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>28h Vorlesung</td>
</tr>
<tr>
<td></td>
<td>28h Übung</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Vor- und Nachbereitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Bearbeitung von Fallstudien für die Übung</td>
</tr>
<tr>
<td></td>
<td>Vorlesung 2 SWS = 28h Präsenzzeit + 62h selbstständige Arbeit</td>
</tr>
<tr>
<td></td>
<td>Übung 2 SWS = 28h Präsenzzeit + 32h selbstständige Arbeit</td>
</tr>
<tr>
<td></td>
<td>-> 150 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Schaffung eines Grundverständnisses für Funktionen und Zusammenhänge in betrieblichen Anwendungssystemen entlang der Wertschöpfungskette</td>
</tr>
<tr>
<td></td>
<td>Praktische Erfahrungen mit prozessorientierter Informationsverarbeitung an einem konkreten ERP-System</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der Wertschöpfungskette nach Porter Prozesse der betrieblichen InformationsverarbeitungForschung und EntwicklungVertriebEinkaufProduktionLogistikFallstudien zu komplexen Geschäftsprozessen mit SAP R/3 Enterprise</td>
</tr>
</tbody>
</table>
| Studien-/ Prüfungsleistungen: | Fallstudienbearbeitung in der Übung
Schriftliche Prüfung, 120 Min.
Schein
Vorleistungen entsprechend Angabe zum Semesterbeginn |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Applied Deep Learning</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ADL</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Sebastian Stober</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Sebastian Stober</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180h (40h contact hours + 140h self-study and practical application in project); contact hours: block lecture (1 week); self-study comprises additional reading; follow-up project in an application domain including a written report as well as kick-off and final presentation in a colloquium.</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>• linear algebra and probability theory</td>
</tr>
<tr>
<td></td>
<td>• machine learning (e.g. “Intelligente Systeme” or “Machine Learning”)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>• confidently apply DL techniques to develop a solution for a given problem</td>
</tr>
<tr>
<td></td>
<td>• follow recent DL publications and critically assess their contributions</td>
</tr>
<tr>
<td></td>
<td>• formulate hypotheses and design & conduct DL experiments to validate them</td>
</tr>
<tr>
<td></td>
<td>• document progress & design decisions for reproducibility and transparency</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• artificial neural network fundamentals (gradient descent & backpropagation, activation functions)</td>
</tr>
<tr>
<td></td>
<td>• network architectures (Convolutional Neural Networks, Recurrent/Recursive Neural Networks, Auto-Encoders)</td>
</tr>
</tbody>
</table>
| Studien-/ Prüfungsleistungen: | project report + kick-off and final presentations
Schein: same (need to pass) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Applied Discrete Modelling</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Applied Discrete Modelling</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ADM</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Claudia Krull</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 Stunden (56 h Präsenzzeit + 124 h selbständiges Arbeiten)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik für Ingenieure</td>
</tr>
<tr>
<td></td>
<td>Programmierkenntnisse</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Die Teilnehmer kennen Markov-Ketten sowie ausgewählte Anwendungen und Lösungsverfahren</td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmer kennen nicht-Markovsche stochastische Prozesse und können diese auf unterschiedliche Weise modellieren und simulieren</td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmer kennen verborgene Markovsche und nicht-Markovsche Prozesse</td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmer kennen ausgewählte Forschungsthemen des Lehrstuhls</td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmer können die erlernten Modelle und Verfahren implementieren und auf Problemen aus den</td>
</tr>
<tr>
<td>Forschungsschwerpunkten der Universität anwenden, insbesondere aus der Medizin und dem Ingenieurwesen</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorleistung</td>
<td></td>
</tr>
<tr>
<td>Benotet: Mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Siehe www.sim.ovgu.de</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Argumentationstheorie in der Künstlichen Intelligenz</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Argumentation Theory in Artificial Intelligence</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ArgTheo</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Learning Methods & Models for Data Science
FIN: M.Sc. DKE (alt) - Bereich Models
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Seminar |
| Arbeitsaufwand: | Präsenzzeiten:
wöchentliche Vorlesungen/Seminare pro Semester: 4 SWS (2SWS pro Studienjahr)
Selbstständiges Arbeiten:
Lesen von wissenschaftlichen Texten, Vorbereitung von Präsentationen, Vorbereitung der Hausarbeit
180h = 4SWS = 56h Präsenzzeit + 124h selbständige Arbeit, Notenskala gemäß Prüfungsordnung |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: |
Empfohlene Voraussetzungen: | Vorkenntnisse in Logik (z.B. Prädikatenlogik erster Stufe) |
| Angestrebte Lernergebnisse: | Lernziele & erworbbene Kompetenzen:
Einarbeitung in einem anspruchsvollen wissenschaftlichen Gebiet
Erwerb relevanter Literatur zum Thema, Gegenüberste-lung von Literaturinhalten anhand von eigens abgeleiteten Vergleichskriterien
Zusammenfassung und kritische Würdigung von Literatur zum vorgegebenen Thema, sowohl in mündlicher als auch in schriftlicher Form |
Argumentationstheorie ist ein interdisziplinäres Fachgebiet mit dem Ziel der Repräsentation, Analyse und Evaluation von Argumentationen. Dabei betrachtet die Argumentationstheorie viele Aspekte von Argumentationen, von denen in deduktiver symbolischer Logik (z.B. Prädikatenlogik erster Stufe) typischerweise abs-trahiert wird:

- Viele Behauptungen lassen sich nicht beweisen, sondern es gibt Argumente dafür und dagegen (Pro und Contra).
- Argumentationen können ein, zwei oder mehr Agenten involvieren, die unterschiedlich kompetent oder vertrauenswürdig sein können.
- Diese Agenten können Argumente vorbringen, die sich gegenseitig stützen oder angreifen.
- Oft werden Argumente nicht-deduktiv gestützt (beispielsweise mit Analogien).
- Die Schlüssigkeit des Arguments hängt vom Vorwissen und den Interessen des Publikums ab.
- Wissensrepräsentationssprachen, die auf deduktiver, symbolischer Logik aufbauen, sind daher in der Regel nicht geeignet um Argumentationen adäquat in Informationssystemen zu repräsentieren.

In der Lehrveranstaltung werden sich die Studenten gemeinsam erarbeiten, wie man Argumente adäquat repräsentiert, analysiert und evaluiert.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistung: regelmäßige aktive Teilnahme an den Seminaren</td>
</tr>
<tr>
<td>Prüfung: Hausarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen: Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. DIGIENG - Methoden des Digital Engineering
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
14 Vorlesungen im SoSe (wöchentlich)
7 Übungen (14-tägig)
Selbständiges Bearbeiten von Übungs-/Programmieraufgaben am Computer
180h = 42h Präsenzzeit + 138h selbstständige Arbeit |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | - Programmierkenntnisse
- Lineare Algebra
- Erfahrung mit Robot Operating System (ROS) und Simulationsumgebungen |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Grundlagen der Assistenzrobotik (mobile Roboter, Industrieroboter, Sensorik)
Modellierung von Roboterkinematiken
Voraussetzungen und Lösungsansätze bzgl. der Mensch-Roboter-Kollaboration (MRK) und Mensch-Roboter-Interaktion
Kenntnisse über die Sicherheitsvorgaben, Anwendung der Sicherheitsaspekte bei der Konzeption von MRK
Fähigkeit Softwareframeworks in der Robotik anzuwenden |
Inhalt:
- Einführung in die Assistenzrobotik
- Grundlagen der Assistenzrobotik (Modellierung von Roboterkinematiken, Bahnplanung, Bewegungs- und Kraftregelung, Sensoren, mobile Systeme)
- Mensch-Roboter-Kollaboration und Sicherheit: Technologien, Maschinen sicherheit, Normen, Rechtslage
- KI-Verfahren in der Robotik
- Softwareframeworks und Simulation
- Semesterbegleitendes Programmierprojekt

Studien-/ Prüfungsleistungen:
Regelmäßige Teilnahme an Vorlesung und Übung
Erfolgreiche Bearbeitung der Übungs- und Programmieraufgaben
mündliche Prüfung: 20 Minuten

Medienformen:

Literatur:
Wird in der VL bekanntgegeben
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Augmented & Virtual Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Augmented & Virtual Reality</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Augmented & Virtual Reality</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>AVR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Christian Hansen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Christian Hansen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Pflichtfächer</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Lecture + team project (4SWS)</td>
</tr>
<tr>
<td></td>
<td>for Bachelor students: 150h (56h contact hours + 94h self-study)</td>
</tr>
<tr>
<td></td>
<td>for Master students: 180h (56h contact ours + 124h self-study)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5 CP</td>
</tr>
<tr>
<td></td>
<td>Master: 6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>n/a</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Introduction to Computer Graphics</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Following topics in the field of VR/AR are addressed:</td>
</tr>
<tr>
<td></td>
<td>- Introduction to VR/AR systems</td>
</tr>
<tr>
<td></td>
<td>- Perceptual aspects</td>
</tr>
<tr>
<td></td>
<td>- Input devices</td>
</tr>
<tr>
<td></td>
<td>- Output devices</td>
</tr>
<tr>
<td></td>
<td>- AR components and types</td>
</tr>
<tr>
<td></td>
<td>- Interaction techniques</td>
</tr>
<tr>
<td></td>
<td>- Case studies</td>
</tr>
</tbody>
</table>
| Inhalt: | Virtual Reality (VR) and Augmented Reality (AR) systems are a component of modern user interfaces in industry, entertainment and medicine. The design and implementation of such systems is part of many development and research projects. This module covers fundamentals and advanced techniques in the area of VR/AR systems. Students will gain the theoretical foundation needed to design, implement, improve, and evaluate VR/AR systems. In addition, the theoretical
foundations can be applied in a team project that accompanies the lecture.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Participation and active involvement in the course and the team project, successful completion of the admission tests and final examination Exam: oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Ausgewählte Algorithmen der Computergraphik</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>AACG</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur Visual Computing</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Christian Rössl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Selbständiges Arbeiten:</td>
<td>Bearbeiten von Übungs- und Programmieraufgaben</td>
</tr>
<tr>
<td></td>
<td>180 h = 56 h Präsenzzeit + 124 h selbständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Kenntnis von grundlegenden und fortgeschrittenen Methoden der Geometrieverarbeitung</td>
</tr>
<tr>
<td></td>
<td>Befähigung zur praktischen Anwendung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Linear least-squares approximation</td>
</tr>
<tr>
<td></td>
<td>Data interpolation and approximation</td>
</tr>
<tr>
<td></td>
<td>Matrix factorization, sparse matrices</td>
</tr>
<tr>
<td></td>
<td>Regularization</td>
</tr>
<tr>
<td></td>
<td>General applications and case studies</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td>regelmäßige Teilnahme an Vorlesung und Übung</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Bearbeitung der Übungsaufgaben ist zum Erwerb der</td>
</tr>
<tr>
<td></td>
<td>Prüfungszulassung notwendig</td>
</tr>
<tr>
<td></td>
<td>Prüfung: mündlich</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Ausgewählte Probleme in Human Factors</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Selected Chapters in Human Factors</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Maria Luz / Jun.Prof. Dr. Christian Hansen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Maria Luz</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>• Wöchentliche Vorlesungen 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>• Vortrag vorbereiten/halten</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Sensibilisierung für Probleme bei der Gestaltung von Mensch-Technik-Interaktion, Fertigkeit neue Entwicklungen in der Mensch-Technik-Interaktion aus psychologischer Sicht zu evaluieren, ihre Risiken und Potenziale basierend auf den psychologischen Theorien und Paradigmen einzuschätzen, Überblick über psychologische Forschungsmethoden</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Automation, Vertrauen in Automation, Einschränkungen der Aufmerksamkeit, Gestaltung von Alarmen und Warnungen, Roboter, autonomes Fahren, Kompabilität, AR/VR</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung: s. Vorlesung Prüfung: Referat</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Automated Reasoning</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Automated Reasoning</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lehrstuhl für theoretische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Fabian Neuhaus</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Seminar |
| Kreditpunkte: | 5 CP |
| Voraussetzungen nach Prüfungsordnung: | Erfolglicher Abschluss des Moduls "Logik" |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Fähigkeit wissenschaftliche Texte zu verstehen, komplexe Probleme in logischen Sprachen zu modellieren, Theorembeweiser zur Lösung von Problemen einzusetzen, Verständnis der Funktion von Theorembeweisern |
| Inhalt: | Inhalte der Lehrveranstaltung: In dem Kurs wird betrachtet, wie man Probleme in einer logischen Sprache modelliert und mit Hilfe eines Automatic Theorem Prover (ATP) löst. Darüber hinaus werden wir uns die Methoden und Algorithmen erarbeiten, die moderne ATPs einsetzen (Resolution, Superposition, Axiomselektion). Dies geschieht durch Lesen |
relevanter Literatur sowie Aufgaben, in denen die Teilnehmer das Gelernte praktisch umsetzen.

| Studien-/Prüfungsleistungen: | Prüfungsvorleistung: regelmäßige Teilnahme am Seminar, erfolgreiche Bearbeitung der Übungsaufgaben
| | Prüfung: mündlich |

<p>| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Automatisierungssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Automatisierungssysteme</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Automatisierungssysteme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Christian Weber (FEIT-IFAT) / Dr.-Ing. Peter Eichelbaum (FEIT-IFAT)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Christian Diedrich</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesung 2 SWS, wöchentliche Übungen 1 SWS, Selbständiges Arbeiten: Nachbereitung der Vorlesung, Lösung der Übungsaufgaben und Prüfungsvorbereitung 3 SWS = 150h (42h Präsenzzeit +108h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Bachelor in Elektrotechnik, Mechatronik oder Informatik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und zu erwerbende Kompetenzen Modelle und Methoden zur Behandlung von Automatisierungssystemen Interaktions- und Kooperationsstrategien von Automatisierungssystemen Integrationstechnologien Prinzipien prozeduraler und deskriptiver Beschreibungsmethoden für technische Systeme</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>In der Automatisierungstechnik kommen moderne Informations- und wissensverarbeitende Systeme zum Einsatz. Die Nähe der Automatisierung zu den dynamischen Prozessen der Maschinen und Produktionsanlagen erfordert für ihre Analyse, Entwurf und Betrieb spezifische Modelle und Methoden, die in diesem Modul vorgestellt werden. Automatisierungssysteme setzen sich aus einer Vielzahl von Komponenten zusammen, die untereinander interagieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung:
Automatisierungstechnik

engl. Modulbezeichnung:
Automatisierungstechnik

ggf. Modulniveau:

Kürzel:

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester:
M.Sc. ab 3./ 4. Semester

Semesterlage:

Modulverantwortliche(r):
Dr.-Ing. J. Ihlow, FEIT-IFAT

Dozent(in):
Dr.-Ing. J. Ihlow, FEIT-IFAT

Sprache:
deutsch

Zuordnung zum Curriculum:
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung

Lehrform / SWS:
Vorlesung; Übung

Arbeitsaufwand:
Präsenzzeiten:
Vorlesung: 2 SWS
Übung: 1 SWS (14-tägig)
Selbstständiges Arbeiten:
Nachbereitung der Vorlesung
Vor- und Nachbereitung der Inhalte der Übung, Musterlösungen verfügbar
120 h (42 h Präsenzezeit + 78 h selbstständige Arbeit)

Kreditpunkte:
4

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:

Angestrebte Lernergebnisse:
Vermittlung grundlegender Methoden der Automatisierung ereignisdiskreter Systeme
Befähigung zum Beschreiben, Modellieren und Realisieren steuerungstechnischer Problemstellungen
Erwerb von Kenntnissen zur programmtechnischen Umsetzung von Steuerungsfunktionen

Inhalt:
Grundlagen der Automatisierung ereignisdiskreter Systeme
Diskrete Ereignisse, Signale und Systeme
Entwurf und Realisierung kombinatorischer Steuerungen mit Methoden der Booleschen Algebra
Automatenmodelle zur Beschreibung und zum Entwurf sequenzieller Steuerungen
Petri-Netze als Methode zum Entwurf und zur Analyse von Steuerungen
Realisierung mit Speicherprogrammierbaren Steuerungen
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Teilnahme an Vorlesungen und Übungen Klausur (90 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>laut Vorlesungsskript</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Bachelorarbeit</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Bachelor Thesis</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 7. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Hochschullehrer der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>-</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV
FIN: B.Sc. INF
FIN: B.Sc. INGINF
FIN: B.Sc. WIF
FIN: B.Sc. |
| Lehrform / SWS: | Kolloquium; Bachelorarbeit |
| Arbeitsaufwand: | 10 Wochen bzw. bei Erstellung in einer integrierten Praxiszeit 20 Wochen
eigenständige Erstellung einer wiss. Arbeit + Kolloquium |
| Kreditpunkte: | 12 |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Es soll der Nachweis erbracht werden, dass innerhalb einer vorgegebenen Frist ein Problem aus einem Fachgebiet der Informatik unter Anleitung mit wissenschaftlichen Methoden bearbeitet werden kann.
Bei erfolgreichem Abschluss des Moduls sind die Studierenden zudem in der Lage, selbst erarbeitete Problemlösungen strukturiert vorzutragen und zu verteidigen. |
| Inhalt: | Das Thema der Bachelorarbeit kann aus aktuellen Forschungsvorhaben der Institute oder aus betrieblichen Problemstellungen mit wissenschaftlichem Charakter abgeleitet werden. Ausgegeben wird die Aufgabenstellung immer von einem Hochschullehrer, der am Studiengang beteiligten Fakultäten.
Im Kolloquium haben die Studierenden nachzuweisen, dass sie in der Lage sind, die Arbeitsergebnisse aus der |
wissenschaftlichen Bearbeitung eines Fachgebietes in einem Fachgespräch zu verteidigen. In dem Kolloquium sollen das Thema der Bachelorarbeit und die damit verbundenen Probleme und Erkenntnisse in einem Vortrag dargestellt und diesbezügliche Fragen beantwortet werden.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>bestandenes Kolloquium</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV
FIN: B.Sc. INF
FIN: B.Sc. INGINF
FIN: B.Sc. WIF
FIN: B.Sc. WIF - Kernfach |
| Lehrform / SWS: | Bachelorarbeit, Kolloquium |
| Arbeitsaufwand: | 20 Wochen
eigenständige Erstellung einer wiss. Arbeit + Kolloquium |
| Kreditpunkte: | 12 |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Es soll der Nachweis erbracht werden, dass innerhalb einer vorgegebenen Frist ein Problem aus einem Fachgebiet der Informatik unter Anleitung mit wissenschaftlichen Methoden bearbeitet werden kann.
Bei erfolgreichem Abschluss des Moduls sind die Studierenden zudem in der Lage, selbst erarbeitete Problemlösungen strukturiert vorzutragen und zu verteidigen. |
Im Kolloquium haben die Studierenden nachzuweisen, dass sie in der Lage sind, die Arbeitsergebnisse aus der |
wissenschaftlichen Bearbeitung eines Fachgebietes in einem Fachgespräch zu verteidigen. In dem Kolloquium sollen das Thema der Bachelorarbeit und die damit verbundenen Probleme und Erkenntnisse in einem Vortrag dargestellt und diesbezügliche Fragen beantwortet werden.

<table>
<thead>
<tr>
<th>Studien-/ Prüfsleistungen:</th>
<th>bestandenes Kolloquium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Bachelor-Projekt</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Bachelor Project</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 7. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Alle Dozenten der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der FIN</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| **Zuordnung zum Curriculum:** | FIN: B.Sc. CV
FIN: B.Sc. INF
FIN: B.Sc. INF - Studienprofil - Web-Gründer
FIN: B.Sc. INGINF
FIN: B.Sc. WIF |
| **Lehrform / SWS:** | Projekt |
| **Arbeitsaufwand:** | Projektspezifisch |
| **Kreditpunkte:** | 18 |
| **Voraussetzungen nach Prüfungsordnung:** | |
| **Empfohlene Voraussetzungen:** | |
| **Angestrebte Lernergebnisse:** | Übertragung von studienfachspezifischen Kenntnissen in die Praxis
Einschätzung eines praktischen Problems und Planung eines Lösungswegs
Entwicklung einer geeigneten Lösung für ein praxistypisches Problem
Kommunikation über Auftragsinhalte, Arbeitsfortschritt und Ergebnisse mit einem Auftraggeber
Planung und Durchführung eines längerfristigen Projekts |
| **Inhalt:** | Studierende bearbeiten ein von einem externen Auftraggeber formuliertes, studienfachnahes Problem. Die zu erbringenden fachbezogenen Leistungen und die Projektorganisation werden mit dem Auftraggeber vereinbart. Zur Projektorganisation gehören u.a. ein Meilensteinplan und ein Kommunikationsplan für den Arbeitsfortschritt und die erzielten Ergebnisse. |
| **Studien-/ Prüfungsleistungen:** | Unbenotete Leistung auf der Basis eines Projektberichts |
| **Medienformen:** | Entfällt |
| **Literatur:** | Projektspezifisch |
Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Bayessche Netze</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Bayes Networks</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BN</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Computational Intelligence</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Rudolf Kruse</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit = 56 Stunden:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit = 124 Stunden:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung von Vorlesung und Übung</td>
</tr>
<tr>
<td></td>
<td>Bearbeiten von Übungs- und Programmieraufgaben</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Wahrscheinlichkeitstheorie und Statistik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Vermittlung von grundlegenden Konzepten und Methoden von Bayesschen Netzen sowie verwandten Methoden zur Entscheidungsunterstützung</td>
</tr>
<tr>
<td></td>
<td>Der Teilnehmer kann Techniken zum Entwurf Bayesscher Netze anwenden</td>
</tr>
<tr>
<td></td>
<td>Der Teilnehmer kann Methoden der Datenanalyse zur Problemlösung anwenden</td>
</tr>
<tr>
<td></td>
<td>Der Teilnehmer kennt exemplarische Anwendungen Bayesscher Netze und versteht deren prinzipielle Funktionsweise</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Methoden zur Repräsentation unsicherer Wissensabhängigkeitsanalysen Lernverfahren Werkzeuge zum Entwurf Bayesscher Netze Propagation, Updating, Revision Entscheidungsunterstützung mit Bayesschen Netzen Nicht-Standard-Verfahren zur Entscheidungsunterstützung wie z.B. Fuzzy-Modelle Fallstudien industrieller und medizinischer Anwendungen</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Betriebliches Rechnungswesen</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Betriebliches Rechnungswesen</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Unternehmensrechnung / Accounting, Professur für Betriebswirtschaftliche Steuerlehre</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Unternehmensrechnung / Accounting, Professur für Betriebswirtschaftliche Steuerlehre</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. WIF - Verstehen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Bildungswissenschaft und audiovisuelle Kommunikation</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Bildungswissenschaft und audiovisuelle Kommunikation</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Bildungswissenschaft und audiovisuelle Kommunikation</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur Allgemeine Pädagogik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur Allgemeine Pädagogik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Allgemeine Visualistik - Erziehungswissenschaft</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung/Seminar</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Eigenständige Vor- und Nachbereitung</td>
</tr>
<tr>
<td></td>
<td>150h = 2 SWS = 28h Präsenzzeit + 122h selbständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Gegenstandsbereich der Bildungswissenschaft Medial vermittelte Sozialisation in Kindheit, Jugendalter, Erwachsenenalter und bei Senioren Medienkompetenz, Medienbildung, Medienerziehung Neue Informationstechnologien und alltägliche Lebenswelten Lernen in virtuellen Welten Internet als Kulturraum Praktische Videoarbeit: Drehbuch, Kamera Durchführung eines Videoprojektes</td>
</tr>
</tbody>
</table>

Seite 73 Inhaltsverzeichnis
<p>| Audiovisuelle Kommunikationsformate in historischer und systematischer Perspektive |
| Studien-/ Prüfungsleistungen: | Prüfung: Hausarbeit, Internetprojekt, Videoprojekt |
| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Biochemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Biochemie</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Biochemie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FNW, Prof. W. Marwan</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>FNW, Prof. W. Marwan</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Biologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform / SWS:</th>
<th>Vorlesung; Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung / 2 SWS PraktikumSelbstständiges Arbeiten: Nacharbeiten der Vorlesung Vor- und Nachbereiten des Praktikums Vorlesung: 3 CP = 90 h (28h Präsenzzeit + 62h selbstständige Arbeit) Praktikum: 2 CP = 60 h (28h Präsenzzeit + 32h selbstständige Arbeit)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>Vorlesung: 3Praktikum: 2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen nach Prüfungsordnung:</th>
<th>Bestandene Klausur Biochemie ist Voraussetzung für Teilnahme am Praktikum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
<th></th>
</tr>
</thead>
</table>

|-----------------|----------------------|

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Von der Chemie zur Biochemie: Moleküle und PrinzipienProteine: Aufbau und Funktion Enzyme und enzymatische Katalyse Struktur- und Motorproteine Zentrale Wege des katabolen und anabolen Stoffwechsels Atmung und Photosynthese Membranproteine und Rezeptoren Prinzipien der Bioenergetik und Membranbiochemie</th>
</tr>
</thead>
</table>

Seite 75 Inhaltsverzeichnis
| Studien-/ Prüfungsleistungen: | Vorlesung: Klausur 2Std.
<p>| | Praktikumsschein |
| Medienformen: | |
| Literatur: | Wird in der Vorlesung bekannt gegeben |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Bioinformatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BioInf</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Data and Knowledge Engineering</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Andreas Nürnberger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. CV - Anwendungsfach - Biologie
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Applications
Bachelor BSYT: Pflichtbereich |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
wöchentliche Vorlesung: 2 SWS
wöchentliche Übung: 2 SWS
Selbstständiges Arbeiten:
Bearbeitung von Übungsaufgaben; Nachbereitung der Vorlesung, Vorbereitung auf die Prüfung
150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Algorithmen und Datenstrukturen |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Diese Vorlesung führt in Kürze in die Grundlagen der Molekularbiologie ein (Vorwissen in diesem Gebiet ist nicht nötig). Danach werden die wichtigsten Methoden für die Analyse von Gendaten eingeführt, wobei ein Fokus auf algorithmische Methoden zur Sequenzanalyse gelegt wird.
Dieser Kurs befähigt einen erfolgreichen Teilnehmer, sowohl Standardmethoden zur Lösung von Sequence Alignment Problemen anzuwenden als auch eigene Algorithmen zu diesem Zweck zu entwickeln. Außerdem wird die Analyse von |
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Standarddaten der Molekularbiologie, insbesondere von Sequenz- und Genexpressionsdaten, vermittelt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt:</td>
<td>Einführung in die Bioinformatik und die Molekularbiologie; Einführung in Datenbanken und speziell molekularbiologische Datenbanken; Algorithmen zur Sequenzanalyse; Heuristische Methoden für die Sequenzanalyse; Algorithmen zur Clusteranalyse; Expressionsdatenanalyse; Algorithmen zum Aufbau phylogentischer Bäume</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Leistungen: Bearbeitung der Übungsaufgaben Prüfung: Klausur 120 min (auch für Schein)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint, Tafel</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Biologische Psychologie</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Biologische Psychologie</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Biologische Psychologie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Biologische Psychologie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Biologische Psychologie</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Allgemeine Visualistik - Psychologie >>> Teile 1 und 2 auch einzeln abrechenbar (2 SWS = 4 CP)</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS im WS, 1 SWS im SoSe Selbstständiges Arbeiten: Individuelle Lernzeiten (Vor- und Nachbereitung) 138 Std. 6*30h (42h Präsenzzeit + 138h selbstständiges Arbeiten), Notenskala gemäß Prüfungsordnung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen: Die Studierenden sollen die biologischen Grundlagen menschlichen Verhaltens erlernen. Die Lehrinhalte sollen sie in die Lage versetzen, sowohl die neuronalen Ursachen allgemeinspsychologischer Phänomene als auch die Analyse ihrer Störungen in den Aufbaumodulen zu verstehen.</td>
</tr>
</tbody>
</table>

Seite 79 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Sprache, Motivation, Emotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endokrines System, Sexualität, Altern</td>
</tr>
<tr>
<td>Psychopathologie, Musikwahrnehmung, Frontallappen, Experimentalplanung</td>
</tr>
</tbody>
</table>

Studien-/ Prüfungsleistungen:

Die Modulprüfung setzt sich kumulativ aus den geforderten Studienleistungen zusammen.
Die Modulprüfung setzt sich aus der gemittelten Note zusammen, die in den beiden Vorlesungsklausuren erzielt wird.

Studienleistungen: Studienbegleitendes Prüfen (Vorlesungsklausur jeweils am Ende des Semesters); Es sind zwei bewertete Studienleistungen vorzuweisen.

Medienformen:

Literatur:

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Biometrics and Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Biometrics and Security</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Biometrics and Security</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BIOSEC</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung; Bearbeitung des Referates zu einem ausgewählten Thema |
| Arbeitsaufwand: | Präsenzzeiten:
wöchentliche Vorlesung: 2 SWS
wöchentliche Übung einschl. Referatsthema: 2 SWS
Selbstständiges Arbeiten:
Aufarbeitung der Vorlesung und Bearbeitung des Referates
180h (56 h Präsenzzeit + 124 h selbstständige Arbeit) |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | Vorlesung „Sichere Systeme“ oder gleichgelagerte LV, eine Vorlesung zu den Grundlagen der Mustererkennung (Pattern recognition) |
| Angestrebte Lernergebnisse: | Erwerb des Grundverständnis über Sicherheitsaspekte in Biometrie-Systemen und die Fähigkeit diese einzuschätzen, Fähigkeit zur Erstellung von Konzepten des Aufbaus und Nutzung von biometrischen Systemen zur Benutzeroauthentifizierung
Fähigkeiten zur Durchführung von Merkmalsextraktion und -verifikation anhand von Ähnlichkeitsberechnungen |
| Inhalt: | |
| Motivation, Einführung und technische Grundlagen biometrischer Systeme |
| Sicherheitsaspekte zur Systemsicherheit |
| Fehlerraten, Erkennungsgenauigkeit und Fälschungssicherheit |
| Multimodal Biometrics and Multifactor Authentication: Fusionstrategien zur Erhöhung der Sicherheit |
| Beispiele: Biometrie und Sicherheit in der Praxis |

| Studien-/ Prüfungsleistungen: |
| Prüfungsleistung / -form: Referat |

<p>| Medienformen: |
| Literatur: |
| siehe unter wwwiti.cs.uni-magdeburg.de/iti_amsl/lehre/ |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Biometrics Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Biometrics Project</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MMDAP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Multiemdia and Security</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Jana Dittmann, Prof. Dr.-Ing. Claus Vielhauer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150h = 4 SWS</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit = 56h</td>
</tr>
<tr>
<td></td>
<td>2 SWS Projektorientierte Vorlesung/Seminar</td>
</tr>
<tr>
<td></td>
<td>2 SWS Projektbesprechung</td>
</tr>
<tr>
<td></td>
<td>selbstständige Arbeit = 94h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5</td>
</tr>
<tr>
<td></td>
<td>Master: 6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>„Algorithmen und Datenstrukturen“, „Grundlagen der theoretischen Informatik“, „Sichere Systeme“</td>
</tr>
<tr>
<td></td>
<td>Praktikum/Seminar zu Themen der Sicherheit</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Fähigkeit zur Team-Arbeit, Projektarbeit, Meilensteinorientierung, besondere Verantwortung, Führung, Delegation, Absprachen von Aufgaben in einem Team</td>
</tr>
</tbody>
</table>

Seite 83 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Praktischen Erfahrungen über biometrischer Systeme in der Anwendung innerhalb der Durchführung eines praxisnahen Projektes zum Thema multimodale Datenanalyse am Beispiel für biometrische Erkennung Ausarbeitung und Einhaltung von Erfolgs- und Qualitätskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Grundzüge des Projektmanagements und der TeamarbeitEinführung in die Sensortechnik und Multimediatechnologie Biometrische Systeme am Beispiel ausgewählter Modalitäten wie Gesicht, Sprache, Handschrift und Fingerabdruck Technische Integrationsaspekte, Umsetzung ausgewählter der Inhalte aus „Sichere Systeme“ und „Algorithmen und Datenstrukturen“ Evaluation biometrischer Systeme</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>- Hausarbeit oder nach Beitritt zur Prüfungsordnung vom November 2013 - Referat</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur: Literatur: s. http://omen.cs.uni-magdeburg.de/itiamsl/lehre/</td>
</tr>
</tbody>
</table>

Seite 84 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Bürgerliches Recht</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Bürgerliches Recht</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Bürgerliches Recht, Handels- und Wirtschaftsrecht, Law and Economics</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Bürgerliches Recht, Handels- und Wirtschaftsrecht, Law and Economics</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - WPF Recht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>4 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>5 x 30h (56 h Präsenzzeit + 94 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>erlangen ein Grundverständnis des juristischen Denkens</td>
</tr>
<tr>
<td></td>
<td>Beherrschen die Grundlagen des Bürgerlichen Rechts.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der juristischen Methodik</td>
</tr>
<tr>
<td></td>
<td>Rechtsgeschäftslehre und Vertragsschluss</td>
</tr>
<tr>
<td></td>
<td>Stellvertretung</td>
</tr>
<tr>
<td></td>
<td>Allgemeine Geschäftsbedingungen</td>
</tr>
<tr>
<td></td>
<td>Recht der Leistungsstörung</td>
</tr>
<tr>
<td></td>
<td>Kauf- und Werkvertragsrecht</td>
</tr>
<tr>
<td></td>
<td>weitere Vertragsarten (insb. Darlehen, Miete und Leasing, Auftrag und Geschäftsbesorgung)</td>
</tr>
<tr>
<td></td>
<td>Bereicherungsrecht</td>
</tr>
<tr>
<td></td>
<td>Deliktsrecht</td>
</tr>
<tr>
<td></td>
<td>Besitz und Eigentumserwerb</td>
</tr>
<tr>
<td></td>
<td>Grundstücksrecht</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Gesetzentexte</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Business Informatics Research: perspectives and outcomes</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Business Informatics Research: perspectives and outcomes</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>BIR:PaO</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 28h.: Selbständiges Arbeiten = 152 h Hausarbeit und Präsentation</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen wissenschaftlichen Schreibens und wissenschaftlicher Forschungsmethoden</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Vertiefende Kenntnisse zu ausgewählten Forschungsthemen der Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Darstellung von Forschungsergebnissen aus dem Bereich der Wirtschaftsinformatik sowie Darstellung der Forschungsmethoden die zur Erreichung dieser Ergebnisse geführt haben.</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Hausarbeit (Präsentation)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Bekanntgabe in der Veranstaltung</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>CAx-Anwendungen</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>CAx Applications</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>CAx II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>CAx</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Maschinenbauinformatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Maschinenbauinformatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Anwendungsfach - Konstruktion & Design
FIN: M.Sc. DIGIENG - Methoden des Digital Engineering |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung
2 SWS Übungen
Selbständiges Arbeiten:
Nachbereitung der Vorlesung, selbständige Übungsarbeit außerhalb der eigentlichen Übungstermine
150h = 4 SWS = 56 h Präsenzzeit + 94 h selbstständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | CAx-Grundlagen oder gleichwertige Vorlesung |
| Angestrebte Lernergebnisse: | Lernziele & zu erwerbende Kompetenzen:
Verschiedene CAx-Anwendungen und ihre Zusammenhänge kennenlernen
Wesentliche Elemente des Product Lifecycle Management beherrschen
Einfache Simulationsverfahren kennenlernen und beherrschen
Einfache PDM-Anwendungen beherrschen |
| Inhalt: | Product Lifecycle Management
Prozessmodellierung
Netzwerke
CAP- und NC-Systeme, CAM-Systeme, Flexible Fertigungssysteme, Handhabungssysteme
Simulationsverfahren
PDM-Anwendungen und Datenbanken |
| Studien-/Prüfungsleistungen: | |

Seite 88 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Leistungen</th>
<th>CAD-Übungstest (90 min), Prüfung: schriftlich (120 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Beamer, Overhead, Tafel</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>CAx-Grundlagen</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>CAx Fundamentals</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>CAx I</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>CAx</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Maschinenbauinformatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Maschinenbauinformatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Konstruktion & Design</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung 2 SWS Übungen Selbständiges Arbeiten: Nachbereitung der Vorlesung, selbstständige Übungsarbeit außerhalb der eigentlichen Übungstermine 150h = 4 SWS = 56 h Präsenzzeit + 94 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Ingenieurinformatik II oder gleichwertige Vorlesung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Methodische Grundlagen der Rechnerunterstützung Hardware und Software eines CAD/CAM-Systems Basiselemente eines CAD/CAM-Systems Geometriemodellierung und Produktmodelle Arbeitstechniken Zeichnungserstellung Erweiterungsmöglichkeiten</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Leistungen: CAD-Übungstestat (90 min), Prüfung: schriftlich (120 min)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Overhead, Tafel</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Chemie für STK</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Chemistry</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat. Franziska Scheffler</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat. Franziska Scheffler</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Verfahrenstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten</td>
</tr>
<tr>
<td></td>
<td>Vorlesung: wöchentlich 2h (2 SWS)</td>
</tr>
<tr>
<td></td>
<td>Seminar/Übungen: 14-tägig 2h (1 SWS)</td>
</tr>
<tr>
<td></td>
<td>selbstständiges Arbeiten</td>
</tr>
<tr>
<td></td>
<td>Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben und Prüfungsvorbereitung130h (42h Präsenzzeit + 88h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Die Studierenden sollen ausgehend von grundlegenden Gesetzmäßigkeiten die häufig komplexen und abstrakten Zusammenhänge in der Chemie rasch erkennen und deren Funktion und Nutzen für verfahrenstechnische Prozesse und Systeme einordnen können.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>1. Aufbau der Materie: Atome, Orbitale Bindungen, Kräfte</td>
</tr>
<tr>
<td></td>
<td>2. Einführung in die Thermodynamik chemischer Reaktionen: Gleichgewicht, Katalyse, Synthese, Redoxvorgänge</td>
</tr>
<tr>
<td></td>
<td>3. Wasserstoff, Edelgase, Halogene, Chalkogene und Sauerstoff: Eigenschaften, Vorkommen, Darstellung, Verbindungen</td>
</tr>
<tr>
<td></td>
<td>4. Wichtige Elemente und Synthesen: Ammoniak, Stickoxide, Salpetersäure, Carbide, Kohlenmonoxid, Kohlendioxid, Silizium</td>
</tr>
<tr>
<td>5. Organischen Verbindungen: Systematik, Nomenklatur, Bindungen, Reaktionsverhalten und -mechanismen, nucleophile und elektrophile Substitution, Eliminierung</td>
<td></td>
</tr>
<tr>
<td>6. Sauerstoffverbindungen: Alkanole, Ether, Phenole, Carbonsäuren und Derivate</td>
<td></td>
</tr>
<tr>
<td>7. Einführung in die Stereochemie: Spezifität und Selektivität, Kunststoffe, wichtige Lösungsmittel, ausgewählte großtechnische Verfahren</td>
<td></td>
</tr>
</tbody>
</table>

Studien-/Prüfungsleistungen: Übungsschein, Klausur

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Clean Code Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Clean Code Development</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Clean Code Development</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>CCD</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Softwaretechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Frank Ortmeier, FIN-IKS</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180h = 4 SWS = 56h Präsenzzeit + 124h selbständige Arbeit am Praktikumsprojekt</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Prinzipien des Clean Code Developments</td>
</tr>
</tbody>
</table>

Prüfung: wissenschaftliches Projekt

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Cloud School</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Cloud School</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>CS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Verstehen & Gestalten |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung
2 SWS Übung
Selbständiges Arbeiten:
Vor- und Nachbereitung VorlesungEntwicklung von Lösungen für die Übung und Vertiefung von InhaltenSemesteraufgabeKlausurvorbereitung
150 h = 45h Präsenzzeit + 105h selbständige Arbeit |
| Kreditpunkte: | 5 CP |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Verständnis für das Cloud Computing-Paradigma, inklusive der Charakteristika, Service- und Deploymentmodelle, Arbeitslasten sowie Erlösmodelle
Verständnis für den Aufbau von Cloud-Applikationen
Verständnis für die Unterstützung der Cloud-Grundsätze auf Business- und Applicationlayer sowie für die Auswahl geeigneter Cloudinfrastruktur- und -plattformangebote
Praktische Anwendung von Cloud Design Patterns für die Entwicklung und Nutzung von Cloud-Applikationen für verschiedene Anwendungsszenarien (z. B. Machine Learning, Data Science) |
<p>| Inhalt: | Cloud Computing Fundamentals |</p>
<table>
<thead>
<tr>
<th>Cloud Offering Patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloud Application Architecture Patterns</td>
</tr>
<tr>
<td>Cloud Application Management Patterns</td>
</tr>
<tr>
<td>Composite Application Pattern</td>
</tr>
<tr>
<td>Impact of Cloud Computing Properties</td>
</tr>
<tr>
<td>Cloud Computing Application Scenarios</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Klausur (Zulassungsvoraussetzung: erfolgreiches Absolvieren der Semesteraufgabe)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Computational Creativity
engl. Modulbezeichnung: Computational Creativity
ggf. Modulniveau:
Kürzel: ComCr
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 1. Semester
Semesterlage:
Modulverantwortliche(r): Professur für Theoretische Informatik
Dozent(in): Dr. Fabian Neuhaus
Sprache: deutsch
Zuordnung zum Curriculum:
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik
FIN: M.Sc. DKE - Bereich Models

Lehrform / SWS: Seminar
Arbeitsaufwand:
 Präsenzzeiten:
 wöchentliches Seminar 4 SWS
 Selbständiges Arbeiten:
 Lesen der Texte
 Vorbereitung von Referaten
 Nachbereitung des Seminars
 Literaturvertiefung
 180h = 4SWS = 56h Präsenzzeit + 124h selbständige Arbeit
Kreditpunkte: 6

Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Einführung in die Logik

Angestrebte Lernergebnisse: Verständnis grundlegender Fragestellungen und Methoden der Kreativitätsforschung in der Informatik.

Inhalt:
 Die Kreativitätsforschung in der Informatik beschäftigt sich mit computerunterstützten Methoden menschliche Intelligenzleistungen die als 'kreativ' eingeschätzt werden können zu modellieren und zu verstehen.
Methoden, die in diesem Seminar genauer studiert werden sind unter anderem: konzeptuelles Blending; Analogien und Metaphern; Turing Test für Kreativität.

| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung: regelmäßige aktive Teilnahme
<pre><code> | Prüfung: mündlich |
</code></pre>
<p>|-----------------------------|--|
| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computational Fluid Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>CFD</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>CFD</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professor for Fluid Dynamics</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. G. Janiga</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Presence: Weekly lecture 1 SWS Weekly exercises 2 SWS (with computer hands-on) Autonomous work: Complementary reading, final project work 90h (42 h presence + 48 h autonomous work)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Fluid Dynamics</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Advanced Fluid Dynamics</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Students participating in this course will get both a solid theoretical knowledge of Computational Fluid Dynamics (CFD) as well as a practical experience of problem-solving on the computer. Best-practice guidelines for CFD are discussed extensively. CFD-code properties and structure are described and the students first realize their own, simple CFD-code, before considering different existing codes with advantages and drawbacks. At the end of the module, the students are able to use CFD in an autonomous manner for solving a realistic test-case, including a critical check of the obtained solutions.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Introduction and organization, main discretization methods Vector- and parallel computing, supercomputers, optimal computing loop Validation procedure, Best Practice Guidelines Linear systems of equations and iterative solution methods.</td>
</tr>
<tr>
<td>Practical solution of unsteady problems, explicit and implicit methods, stability.</td>
<td></td>
</tr>
<tr>
<td>Gridding and grid independency.</td>
<td></td>
</tr>
<tr>
<td>Practical CFD, importance and choice of physical models.</td>
<td></td>
</tr>
<tr>
<td>Properties and computation of turbulent flows.</td>
<td></td>
</tr>
<tr>
<td>Properties and computation of Non-newtonian flows.</td>
<td></td>
</tr>
<tr>
<td>Properties and computation of multi-phase flows.</td>
<td></td>
</tr>
<tr>
<td>Preparation of final CFD project as teamwork</td>
<td></td>
</tr>
</tbody>
</table>

Studien-/ Prüfungsleistungen:

Success:
Oral defense of final CFD project
Exam: oral

Medienformen:

Literatur:

Further literature given during first lecture
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computational Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computational Geometry</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Präsentationen</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 3 SWS Vorlesung + Präsentationen</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit: Bearbeiten der Übungen und Nachbereitung der Vorlesungen, Vorbereiten einer Präsentation</td>
</tr>
<tr>
<td></td>
<td>180h = 4 SWS = 56h Präsenzzeit + 124h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse der Grundzüge der Algorithmischen Geometrie</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen: Fähigkeit zur Entwicklung von Algorithmen und Datenstrukturen für anspruchsvolle geometrische Probleme. Fähigkeit zur Analyse und Beurteilung</td>
</tr>
</tbody>
</table>
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung: s. Vorlesung
Prüfung: mündlich |
|-----------------------------|--|
Boissonnat, Yvinec; Algorithmic Geometrie. |
<p>| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computational Intelligence in Games</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computational Intelligence in Games</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>CIG</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>CIG</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Intelligente Systeme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Sanaz Mostaghim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übungen</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit:</td>
</tr>
<tr>
<td></td>
<td>Bearbeiten von Übungs- und Programmieraufgaben</td>
</tr>
<tr>
<td></td>
<td>für Master Studenten = 180 h = 56 h Präsenzzeit + 124 h selbstständige Arbeit</td>
</tr>
<tr>
<td></td>
<td>für Bachelor Studenten = 150 h = 56 h Präsenzzeit + 94 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5</td>
</tr>
<tr>
<td></td>
<td>Master: 6</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Anwendung der Methoden der Computational Intelligence zur Problemlosung in ComputerspieleBefähigung zur Entwicklung der Algorithmen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
</tbody>
</table>
This course addresses the basic and advanced topics in the area of computational intelligence and games and contains three parts:

Part one addresses the basics in Evolutionary Game Theory (EGT). In this part you will learn about simple games such as scissors/rock/paper and the main focus on the strategies for playing games.

Part two is about learning agents and we focus on reinforcement learning mechanisms. There are three questions for games:
– How can we use the information from a search mechanism to learn?
– How can we use reinforcement learning to find for a better strategy?
– How can we use reinforcement learning as a search mechanism?

The application is on board games.

Part three contains the advanced topics in games and artificial intelligence such as how can we program an agent who can pass a Turing test? How can we consider physical constraints of a spaceship while moving in an unknown terrain?

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Für einen Schein:</td>
</tr>
<tr>
<td>Regelmäßige Teilnahme an Vorlesung und Übung</td>
</tr>
<tr>
<td>Für eine Prüfung oder benoteten Schein:</td>
</tr>
<tr>
<td>Regelmäßige Teilnahme an Vorlesung und Übung</td>
</tr>
<tr>
<td>Schriftliche Prüfung, 120 Min.</td>
</tr>
<tr>
<td>Master Studenten: Abgabe einer zusätzlichen Programmierungsaufgabe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Millington and John Funge, Artificial Intelligence for Games, CRC Press, 2009</td>
</tr>
<tr>
<td>Jorgen W. Weibull, Evolutionary Game Theory, MIT Press, 1997</td>
</tr>
<tr>
<td>Thomas Vincent, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, Cambridge University Press, 2005</td>
</tr>
<tr>
<td>Josef Hofbauer, Karl Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| Bezierflächen über Dreiecken
Surface interrogation and fairing
Subdivision curves and surfaces |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
</tbody>
</table>
| Prüfungsvorleistung: erfolgreiches Bearbeiten der
Übungsaufgaben
Mündliche Prüfung
Schein: Bestehen der mündlichen Prüfung |
| Medienformen: |
| Literatur: |
| G. Farin. Curves and Surfaces for Computer Aided Geometric
J. Hoschek and D. Lasser. Grundlagen der Geometrischen
Datenverarbeitung. B.G. Teubner, Stuttgart, 1989. (English
translation: Fundamentals of Computer Aided Geometric
Design, AK Peters.)
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computer Tomographie - Theorie und Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computer Tomographie - Theorie und Anwendung</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat. Georg Rose (FEIT-IESK)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat. Georg Rose (FEIT-IESK)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen
FIN: M.Sc. DIGIENG - Methoden des Digital Engineering |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung
Selbständiges Arbeiten
180h (42h Präsenzzeit + 108h Selbständiges Arbeiten + 30h Seminar) |
| Kreditpunkte: | 6 CP |
| Voraussetzungen nach Prüfungsordnung: | Digitale Signalverarbeitung, Grundlagen der Physik |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Verständnis der Systemtheorie abbildender Systeme
Überblick über die Physik und Funktionsweise der Computer Tomographie
Verständnis der mathematischen Verfahren zur tomographischen Rekonstruktion
Überblick über die aktuellen Forschungsgebiete der Tomographischen Bildgebung |
| Inhalt: | Beginnend mit der Systemtheorie abbildender Systeme folgt die Behandlung der physikalischen Eigenschaften der Röntgenstrahlung und ihrer Wechselwirkung mit Materie.
Im zweiten Teil wird die Röntgen basierende Projektionsbildgebung diskutiert. Im dritten Teil, folgt das genaue Studium der mathematischen Verfahren der tomographischen Bildgebung und die Behandlung diverser Bildrekonstruktionsverfahren.
Die einzelnen Inhalte sind:
Systemtheorie abbildender Systeme
Physikalische Grundlagen
Röntgenröhren und Röntgendetektoren |
<table>
<thead>
<tr>
<th>Projektionsbildgebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rekonstruktionsverfahren: Fourier-basierende Verfahren, Gefilterte Rückprojektion, Algebraische Verfahren, statistische Verfahren</td>
</tr>
<tr>
<td>Geometrien: Parallel-, Fächer- und Kegelstrahl</td>
</tr>
<tr>
<td>Implementierungsaspekte</td>
</tr>
<tr>
<td>Bildartefakte und ihre Korrekturen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Schriftliche Prüfung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>

Seite 110 *Inhaltsverzeichnis*
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computer-Assisted Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computer-Assisted Surgery</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>CAS</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>CAS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Chair for Computer-Assisted Surgery</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Christian Hansen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Anwendungsfach - Medizintechnik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform / SWS:</th>
<th>Vorlesung; Seminar; Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand:</td>
<td>Lecture + Seminar (4SWS) or Lecture + Teamproject (4SWS)</td>
</tr>
<tr>
<td></td>
<td>for Bachelor students: 150h (56h contact hours + 94h self-study)</td>
</tr>
<tr>
<td></td>
<td>for Master students: 180h (56h contact ours + 124h self-study)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5</td>
</tr>
<tr>
<td></td>
<td>Master: 6</td>
</tr>
</tbody>
</table>

| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |

Angestrebte Lernergebnisse:	Following topics are addressed:
	Fundamentals of Intraoperative Imaging
	Fundamentals of Surgical Visualization
	Computer-Assisted Surgery Planning
	Surgical Navigation Systems
	Surgical Augmented Reality
	Surgeon-Computer Interaction
	Robotic Surgery
	Development and Evaluation of Medical Software
Inhalt:

Computer-assisted surgery is an interdisciplinary research field that builds a bridge between surgery and computer science. It represents a set of methods which use computer technology to support preoperative planning, the actual surgery, and postoperative assessment. This modul will offer an overview of computer-assisted surgery. After an introduction of fundamentals, the state of the art in computer-assisted surgery is presented on the basis of clinical examples.

Studien-/ Prüfungsleistungen:

Participation and active involvement in the course and the exercises, successful realization of the exercises and final examination
Exam: oral

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computergestützte Diagnose und Therapie</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computer Aided Diagnosis and Therapy</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>CDT</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik /Visualisierung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Bernhard Preim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Anwendungsfach - Medizintechnik</td>
</tr>
<tr>
<td></td>
<td>Master MSE, BSC Medizintechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung, 2 SWS Seminar</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Nachbereiten des Vorlesungsstoffes, Vorbereitung von Vorträgen, Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>180h = 4 SWS = 56h Präsenzzeit + 124h selbst. Arbeit inkl. Hausarbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorlesung Visualisierung</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Verständnis ausgewählter diagnostischer u. therapeutischer ProzesseFähigkeit, den Bedarf für eine Computerunterstützung abzuschätzenVerständnis der Kriterien für die Akzeptanz von (neuen) Softwarelösungen in der bildbasierten Diagnostik und Therapie</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Prinzipien der 3D-Bildgebung in der MedizinBeschreibung ausgewählter diagnostischer Prozesse</td>
</tr>
<tr>
<td></td>
<td>Quantifizierung in der bildbasierten Diagnostik</td>
</tr>
<tr>
<td></td>
<td>Computergestützte Diagnostik, insbesondere Erkennung von Lungenrundherden in CT-Daten und Läsionen in Mammographien</td>
</tr>
<tr>
<td></td>
<td>Grundlagen und Anwendungen der virtuellen Endoskopie</td>
</tr>
<tr>
<td></td>
<td>Grundlagen und ausgewählte Beispiele der Planung von Interventionen und Operationen</td>
</tr>
</tbody>
</table>
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung: s. Vorlesung
Prüfung: mündlich |
|-----------------------------|--|
| Medienformen: | Literatur: Lehmann, Thomas „Digitale Bildverarbeitung für Routineanwendungen“, Universitätsverlag, 2005
Preim, Bartz „Visualization in Medicine“, Morgan Kaufman, 2007
Preim, Botha: Visual Computing for Medicine, 2nd Edition, ,
Morgan Kaufman, San Francisco, 2013 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computergraphik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computer Graphics I</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Visual Computing</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Holger Theisel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesungen</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übungen</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit:</td>
</tr>
<tr>
<td></td>
<td>94 h bzw. 124h Bearbeitung der Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Bachelor: 5 Credit Points = 150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit,</td>
</tr>
<tr>
<td></td>
<td>Master DigiENG: 6 Credit Points = 180h = 4 SWS = 56h Präsenzzeit + 124h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5</td>
</tr>
<tr>
<td></td>
<td>Master: 6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Modul Einführung in die Informatik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und erworbbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Erwerb von Grundkenntnissen über die wichtigsten Algorithmen der Computergraphik</td>
</tr>
<tr>
<td></td>
<td>Erkennen grundlegender Prinzipien der Computergraphik ermöglicht schnelle Einarbeitung in neue Graphikpakete und Graphikbibliotheken</td>
</tr>
<tr>
<td></td>
<td>Befähigung zur Nutzung graphischer Ansätze für verschiedene Anwendungen der Informatik</td>
</tr>
</tbody>
</table>

Seite 115 Inhaltsverzeichnis
| Inhalt: | Einführung, Geschichte, Anwendungsgebiete der ComputergraphikModellierung und Akquisition graphischer Daten
Graphische Anwendungsprogrammierung
Transformationen
Clipping
Rasterisierung und Antialiasing
Beleuchtung
Radiosity
Texturierung
Sichtbarkeit
Raytracing
Moderne Konzepte der Computergraphik im Überblick |
|---|---|
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistungen:
Erfolgreiches Bearbeiten der Übungsaufgaben
Erfüllen einer Programmieraufgabe
Prüfung: Klausur, 120 Min.
Schein: Bestehen der Klausur |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Computernetze</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computer Networks</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ComNets</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Technische Informatik / Communication and Networked Systems</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Mesut Güneş</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - WPF Technische Informatik
FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. INGINF - WPF Technische Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeit = 56 h
2 SWS Vorlesung
2 SWS Übung
Bachelor:
Selbstständiges Arbeit = 94 h
Bearbeitung von Übungs- und Programmieraufgaben & Prüfungsvorbereitungen |
| Kreditpunkte: | Bachelor: 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Technische Informatik I
Technische Informatik II
Programmierparadigmen
Algorithmen und Datenstrukturen |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Umfassendes Verständnis der Grundlagen von Computernetzen
Fähigkeit, die grundlegende Schichtenarchitektur zu verstehen und einzuordnen sowie die wesentlichen Protokolle des Internets anzuwenden |

Seite 117 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Kompetenz, die prinzipiellen Sicherheitsaspekte zu analysieren und entsprechend in Kommunikationsdiensten realisieren</th>
<th>Für Master: erweiterte Kompetenzen im wissenschaftlichen Forschen und Schreiben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt:</td>
<td>Inhalte</td>
</tr>
<tr>
<td>Grundlegende Protokolle und Ansätze von der Bitübertragungsschicht bis zur Anwendungsschicht</td>
<td>Inhalte</td>
</tr>
<tr>
<td>ISO/OSI-Architektur vs TCP/IP-Architektur</td>
<td>Grundlegende Protokolle und Ansätze von der Bitübertragungsschicht bis zur Anwendungsschicht</td>
</tr>
<tr>
<td>Datenübertragung</td>
<td>ISO/OSI-Architektur vs TCP/IP-Architektur</td>
</tr>
<tr>
<td>Medienzugriffskontrolle</td>
<td>Datenübertragung</td>
</tr>
<tr>
<td>Fehlerbehandlung</td>
<td>Medienzugriffskontrolle</td>
</tr>
<tr>
<td>Zuverlässige Nachrichtenübertragung</td>
<td>Fehlerbehandlung</td>
</tr>
<tr>
<td>Kommunikationssicherheit</td>
<td>Zuverlässige Nachrichtenübertragung</td>
</tr>
<tr>
<td>Basisdienste auf Anwendungsebene</td>
<td>Kommunikationssicherheit</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Leistungen:</td>
</tr>
<tr>
<td>Regelmäßige Teilnahme an Vorlesung und Übungen</td>
<td>Regelmäßige Teilnahme an Vorlesung und Übungen</td>
</tr>
<tr>
<td>Erfolgreiche Bearbeitung einer Programmieraufgabe</td>
<td>Erfolgreiche Bearbeitung einer Programmieraufgabe</td>
</tr>
<tr>
<td>Prüfung: Klausur 120 min</td>
<td>Prüfung: Klausur 120 min</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Literatur:</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Eine ausführliche Literaturliste wird in der Vorlesung bekannt gegeben. Basis-Literatur:</td>
</tr>
<tr>
<td></td>
<td>Andrew S. Tanenbaum, “Computer Networks”, Pearson International</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Computernetze 2</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Computer Networks 2</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ComNets2</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Mesut Güneş</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Mesut Güneş</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit = 56 h • 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>• 2 SWS Übung</td>
</tr>
<tr>
<td>Bachelor:</td>
<td>Selbstständiges Arbeit = 94 h</td>
</tr>
<tr>
<td></td>
<td>• Bearbeitung von Übungs- und Programmieraufgaben & Prüfungsvorbereitungen</td>
</tr>
<tr>
<td>Master:</td>
<td>Selbstständiges Arbeit = 124 h</td>
</tr>
<tr>
<td></td>
<td>• Bearbeitung von Übungs- und Programmieraufgaben in erweitertem Umfang & Prüfungsvorbereitungen</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 Credit Points</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>• Technische Informatik I</td>
</tr>
<tr>
<td></td>
<td>• Technische Informatik II</td>
</tr>
<tr>
<td></td>
<td>• Programmierparadigmen</td>
</tr>
<tr>
<td></td>
<td>• Algorithmen und Datenstrukturen</td>
</tr>
<tr>
<td></td>
<td>• Computernetze</td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse: | Umfassendes Verständnis der Grundlagen von ComputernetzenFähigkeit, die grundlegende

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen: Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
</tbody>
</table>

Seite 121 Inhaltsverzeichnis
Studien-/ Prüfungsleistungen:
Voraussetzung für die Vergabe von Credit Points ist die regelmäßige Teilnahme an den Lehrveranstaltungen. Studienleistungen: mindestens 1 benoteter und 1 unbenoteter LN. Form der Modulprüfung: benoteter Leistungsnachweis. Die Prüfungsnote ergibt sich aus der Note des LN. Gesamtzahl der Credits für das Modul: 10 CP.

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Data Management for Engineering Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Data Management for Engineering Applications</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Data Management for Engineering Applications</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DMEA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Datenbanken und Informati-onssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Eike Schallehn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Übungsaufgaben & Klausurvorbereitung</td>
</tr>
<tr>
<td></td>
<td>Bachelor: 5 Credit Points = 150h = 4SWS = 56h Präsenzzeit + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td></td>
<td>Master: 6 Credit Points = 180h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit + 30h Aufgabe (Laborübung)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5</td>
</tr>
<tr>
<td></td>
<td>Master: 6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Identifizieren, Beschreiben und Klassifizieren von Ingenieursanwendungen, Grundverständnis von Informationssystemen, Befähigung zum Entwurf einer Datenbank im Kontext einer Ingenieursanwendung</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Einführung in den Entwurf relationaler Datenbanksysteme, Produktdatenmanagement mit Datenbanksystemen, Workflowunterstützung und Interoperabilität, Datenmanagement in der Automatisierung</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td></td>
</tr>
</tbody>
</table>
| Medienformen: | Prüfungsvoraussetzung: Anmeldung und Teilnahme an der Vorlesung und Übung
<p>| | Prüfung oder Schein: schriftlich 120min |
| Literatur: | Siehe http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/ |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Data Mining – Einführung in Data Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Data Mining</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DM4BA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lehrstuhl Angewandte Informatik / Wirtschaftsinformatik II</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Myra Spiliopoulou</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung und Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Entwicklung von Lösungen für die Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung für die Abschlussprüfung</td>
</tr>
<tr>
<td></td>
<td>150h=56h Präsenzzeit+94h selbständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Informatik, Datenbanken, Programmierung</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Erwerb von Grundkenntnissen zu Data Mining</td>
</tr>
<tr>
<td></td>
<td>Anwendung von Data Mining Kenntnissen zur Lösung von reellen, vereinfachten Problemen</td>
</tr>
<tr>
<td></td>
<td>Vertrautheit mit Data Mining Werkzeugen</td>
</tr>
<tr>
<td></td>
<td>Souveräner Umgang mit deutsch- und englischsprachiger Literatur zum Fachgebiet</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Daten und Datenaufbereitung für Data Mining</td>
</tr>
<tr>
<td></td>
<td>Data Mining Methoden für: Klassifikation, Clustering, Entdeckung von Assoziationsregeln</td>
</tr>
<tr>
<td></td>
<td>Fallbeispiele</td>
</tr>
</tbody>
</table>

Seite 125 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>---</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Ian Millington and John Funge, Artificial Intelligence for Games, CRC Press, 2009</td>
</tr>
<tr>
<td></td>
<td>Jorgen W. Weibull, Evolutionary Game Theory, MIT Press, 1997</td>
</tr>
<tr>
<td></td>
<td>Thomas Vincent, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics, Cambridge University Press, 2005</td>
</tr>
<tr>
<td></td>
<td>Josef Hofbauer, Karl Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, 1998</td>
</tr>
<tr>
<td></td>
<td>Die Literaturliste kann zusätzliche Fallstudien und weitere wissenschaftliche Arbeiten umfassen. Diese werden am Anfang des jeweiligen Veranstaltungsblocks bekannt gegeben.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Data Mining I - Introduction to Data Mining</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Data Mining I - Introduction to Data Mining</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DM_ENG</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lehrstuhl Angewandte Informatik / Wirtschaftsinformatik II</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Myra Spiliopoulou</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Fundamentals of Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>WPF für Export (außer Master Statistik) Für Freigabe / Zuordnung zu Curricula von interdisziplinären Studi- engängen und von Studiengängen außerhalb der FIN, s. Studiumsdokumente des jeweiligen Studiengangs.</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung und Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit: Vor- und Nachbearbeitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Entwicklung von Lösungen für die Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung für die Abschlussprüfung</td>
</tr>
<tr>
<td></td>
<td>6 CP = 56h Präsenzzeit (4 SWS) + 124h selbständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Export: Anzahl der CP wird in den Studiumsdokumenten des jeweiligen importierenden Studiengangs bestimmt.</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen: Erwerb von Grundkenntnissen zu Data Mining</td>
</tr>
<tr>
<td></td>
<td>Anwendung von Data Mining Kenntnissen zur Lösung von reellen, vereinfachten Problemen</td>
</tr>
<tr>
<td></td>
<td>Vertrautheit mit Data Mining Werkzeugen</td>
</tr>
<tr>
<td></td>
<td>Souveräner Umgang mit englischsprachiger Literatur zum Fachgebiet</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Daten und Datenaufbereitung für Data Mining</td>
</tr>
<tr>
<td></td>
<td>Methoden für: Klassifikation, Clustering, Entdeckung von Assoziationsregeln</td>
</tr>
</tbody>
</table>

Seite 127 Inhaltsverzeichnis
| Studien-/Prüfungsleistungen: | Vorleistungen:
Erfolgreiche Bearbeitung der Übungsaufgaben
Präsentationen von Ergebnissen
Modalitäten werden zum Veranstaltungsbeginn angegeben.
Prüfung: schriftlich (auf Englisch) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Die Literaturliste kann zusätzliche Fallstudien und weitere wissenschaftliche Arbeiten umfassen. Diese werden am Anfang des jeweiligen Veranstaltungsblocks bekannt gegeben."</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Data Mining II - Advanced Topics in Data Mining</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Data Mining II - Advanced Topics in Data Mining</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Data Mining II - Advanced Topics in Data Mining</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DM2</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lehrstuhl Angewandte Informatik / Wirtschaftsinformatik II</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Myra Spiliopoulou</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>WPF für Master Statistik (Export)</td>
</tr>
<tr>
<td></td>
<td>Für Freigabe / Zuordnung zu Curricula von interdisziplinären Studiengängen und von Studiengängen außerhalb der FIN, s. Studiumsdokumente des jeweiligen Studiengangs.</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung und Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Entwicklung von Lösungen für die Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung für die Abschlussprüfung</td>
</tr>
<tr>
<td></td>
<td>6 CP = 56h Präsenzzeit (4 SWS) + 124h selbständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Export: Anzahl der CP wird in den Studiumsdokumenten des jeweiligen importierenden Studiengangs bestimmt.</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundlagen zu: Data Mining</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen: Dieses Modul vermittelt, wie hochdimensionierte, komplexe, dynamische Daten mit Mining Methoden analysiert werden können. Das Modul liefert Kenntnisse zu Methoden, sowie Kompetenzen zur Datenanalyse und Auswertung, also zur Nutzung der Methoden in ausgewählten Anwendungsszenarien.</td>
</tr>
</tbody>
</table>
Inhalt:
Data Mining Methoden für Data Science: Stream Mining Learning on time series for classification prediction Anwendungen aus Medizinforschung, Web-Anwendungen

Studien-/ Prüfungsleistungen:

Medienformen:

Literatur:
In the seminar, we will use the statistical programming language R. Necessary skills to manage and analyze data will be taught and practiced on real-world applications. Programming knowledge of other courses is helpful but not mandatory. However, students are expected to have a profound knowledge of fundamental data analysis techniques, such as classification, regression and clustering.
After successful completion of this course, the student will be able to proficiently perform the following tasks in R:
- Import and preprocess raw data (files, databases, web APIs)
- Transform data for modelling
- Perform exploratory data analysis with summary statistics and visualization
- Understand, build and evaluate predictive classification and prediction models, including regression models, tree-based models, ensembles and boosted models
- Communicate and disseminate results and findings through reproducible documents, presentations, websites and interactive web applications

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Fundamentals & Visualization: Basics, scripts, workflows, vectors & functions in R Explorative data visualization Data transformation Part Data Management & Exploratory Data Analysis: Data wrangling/munging/cleaning & scraping Generating hypotheses and an intuition about the data with exploratory data analysis Data import Tidy data management Relational data Strings, categorical data, dates & time Iteration: imperative & functional programming Part Modeling: Linear regression Classification Evaluation Model selection & regularization (LASSO, Ridge) Feature selection & model interpretation Decision trees Ensembles: random forests Boosting: gradient boosted trees Unsupervised learning, e.g. k-means, hierarchical clustering, self-organizing maps, principal component analysis Topic modeling with simple graphical models Statistical testing Part Communication: Communication and dissemination of results through visualization and interpretable summaries with documents, notebooks, presentations & websites Interactive web-based applications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsform: Hausarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Data Processing for Data Science
FIN: M.Sc. DKE (alt) - Bereich Methods II
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik |
| Lehrform / SWS: | Vorlesung; Übung; Vorlesungen, Übungen und praktische Übungen im Labor (einschließlich Präsentation vor der Übungsgruppe) sowie selbstständige Arbeit (Lösen von Übungsaufgaben, Literaturstudium) |
| Arbeitsaufwand: | Präsenzzeiten:
wöchentliche Vorlesungen 2 SWS
wöchentliche Übungen 2 SWS
Selbstständiges Arbeiten:
Übungsaufgaben & Klausurvorbereitung
180h (56h Präsenzzeit in den Vorlesungen & Übungen + 124h selbstständige Arbeit) |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Veranstaltung „Datenbanken I“ und „Datenbanken II“ |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Verständnis des Data Warehouse-Ansatzes
Verständnis von Datenbanktechnologien im Umfeld von Data Warehouses
Befähigung zum Einsatz von DW-spezifischer DBMS-Funktionalität |
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Befähigung zum Entwurf und zur Entwicklung einer Data Warehouse-Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Der Data Warehouse-Ansatz, AbgrenzungArchitektur</td>
</tr>
<tr>
<td></td>
<td>Extract-Transform-Load</td>
</tr>
<tr>
<td></td>
<td>OLAP und das Multidimensionale Datenmodell</td>
</tr>
<tr>
<td></td>
<td>Umsetzung in Datenbanken</td>
</tr>
<tr>
<td></td>
<td>Anfrageverarbeitung und –optimierung</td>
</tr>
<tr>
<td></td>
<td>Index- und Speicherungsstrukturen</td>
</tr>
<tr>
<td></td>
<td>Business Intelligence</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungszulassungsvoraussetzung: Anmeldung und Teilnahme an den Übungen</td>
</tr>
<tr>
<td></td>
<td>Prüfung: mündlich</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Data Warehouse Technologien. Veit Köppen, Gunter Saake Kai-Uwe Sattler. 2. Auflage, mitp-Verlag, 2014</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Database Concepts / Datenbanken</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Database Concepts / Datenbanken</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DB 1</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Gunter Saake</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure</td>
</tr>
<tr>
<td></td>
<td>Mathematik/ Mathematik AF Informatik: 5. Sem.</td>
</tr>
<tr>
<td></td>
<td>English Course in summer semester</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Time of Presentness = 56h2 SWS Lecture + 2 SWS ExerciseArbeiten = 94hPreparing for Exercises & ExamMaster + 30h additional Exercises</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor 5 Master 6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Cannot be attended together with “Datenbanken 1”</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Basic Understanding of Database Systems (Terminology, Basic Concepts)Techniques to Design a Relational DatabaseKnowledge about Relational Database LanguagesConcepts to Implement Database Applications</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Properties of Database SystemsArchitecturesConceptual Design of Relational DatabasesRelational Database ModelMapping of ER-Schemas to RelationsDatabase Languages (Relational Algebra, SQL)Formal Design Criteria and NormalizationDatabase Application ProgrammingFurther Database Concepts, e.g., Views, Triggers, Access Rights</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Exam Requirements Application and Successful Completion of ExercisesExam Written Exam (120 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Datenanalyse, Visualisierung und Visual Analytics</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Data Analysis, Visualization and Visual Analytics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DatenVisVA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur Visual Computing</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Dirk Joachim Lehmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS wöchentliche Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Nacharbeiten der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>Verfassen einer umfangreichen Hausarbeit</td>
</tr>
<tr>
<td></td>
<td>150 h (28h Präsenzzeit + 42h selbstständige Nacharbeit + 60h Hausarbeit +20h Prüfungsvorbereitung)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen Statistik, Bildverarbeitung, und Visualisierung</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Methoden der klassischen Datenanalyse</td>
</tr>
<tr>
<td></td>
<td>Methoden der interaktiven visuellen Datenanalyse</td>
</tr>
<tr>
<td></td>
<td>Chancen und Grenzen der Kombination beider Ansätze (Visual Analytics)</td>
</tr>
<tr>
<td></td>
<td>Methoden der Visual Analytics</td>
</tr>
<tr>
<td></td>
<td>Verständnis für Anwendungsgebiete der Visual Analytics</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur eigenständigen Auswahl von geeigneten Techniken - seien sie nun visuell, interaktiv, oder automatisiert - zum Lösen eines Datenanalyse-Problems. (Lösungsorien-tiertheit)</td>
</tr>
</tbody>
</table>
| Inhalt: | Fähigkeit zur Einsicht falls ein Datenanalyse-Problem mit existierenden Techniken nicht adressierbar ist. (Effektivität & Problembewusstsein)
Fähigkeit zum selbständigen Erarbeiten weiterer Analysetechniken aus der Literatur. (Selbstständigkeit) |
|---|---|
| Inhalt: | Biologisch und kognitive Grundlagen
Datenmodelle und deren formale Beschreibung
Übersicht zu Themen der klassischen (automatisierbaren) Datenanalyse
Visuelle Suche vs. automatische Datenanalyse: Gegenüberstellung der jeweiligen Vor- und Nachteile und gegenseitig ergänzenden Eigenschaften
Spektrum von interaktiven Visualisierungstechniken und visuellen Manipulationstechniken der explorativen visuellen Datenanalyse
Dimensionsreduzierende Techniken (multivariate Projektionen) der visuellen Suche nach Mustern, Qualitätsmaße zur automatisierten Bewertung von Visualisierungen, Interpretationsregeln für ausgewählte Visualisierungen, Skalierungsproblem, Überzeichnungsproblem, Subspace Clustering
Visual Design = Methoden zur Wahl geeigneter Visualisierung-Ansätze in Abhängigkeit von Domain und Datentyp zugrundliegender Daten
Visual Analytics, als Kombination von automatischer Datenanalyse (Pre-Prozess u.a. zur Datenreduktion) und interaktiven multiplen Visualisierungstechniken
Aktuelle Tools, Realisierungen und Bewertungen für Visual Analytics in der praktischen Anwendung, Offene Probleme |
| Studien-/Prüfungsleistungen: | Vorleistung: Teilnahme Vorlesung, bestandene Hausarbeit
Prüfung: schriftliche Prüfung (Klausur)
Schein: Bestehen der Prüfung |
<p>| Medienformen: | Powerpoint, Tafel, Video, Softwaredemonstrationen |
| Literatur: | Literaturangaben während der Vorlesung. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Datenbanken</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Databases</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>100391</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Gunter Saake</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Kernfächer
FIN: B.Sc. INF - Kernfächer
FIN: B.Sc. INGINF - Kernfächer
FIN: B.Sc. WIF - Anwenden
FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten = 56h:
2 SWS Vorlesung, 2 SWS Übung
Selbständige Arbeiten = 94h:
Übungsaufgaben & Klausurvorbereitung
Master: + 30h zusätzliche Aufgabe |
| Kreditpunkte: | Bachelor: 5
Master: 6 |
| Voraussetzungen nach Prüfungsordnung: | Kann nicht zusammen mit „Database Concepts“ belegt werden |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Grundverständnis von Datenbanksystemen (Begriffe, Grundkonzepte)
Befähigung zum Entwurf einer relationalen Datenbank
Kenntnis relationaler Datenbanksprachen
Befähigung zur Entwicklung von Datenbankanwendungen |
| Inhalt: | Eigenschaften von DatenbanksystemenArchitekturen
Konzeptueller Entwurf einer relationalen Datenbank
Relationales Datenbankmodell
Abbildung ER-Schema auf Relationen
Datenbanksprachen (Relationenalgebra, SQL)
Formale Entwurfskriterien und Normalisierungstheorie
Anwendungsprogrammierung |
<table>
<thead>
<tr>
<th>Weitere Datenbankkonzepte wie Sichten, Trigger, Rechtevergabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
</tr>
<tr>
<td>Prüfungsvoraussetzung: Anmeldung und Teilnahme an den Übungen</td>
</tr>
<tr>
<td>Prüfung/Schein: schriftlich (120 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Data Processing for Data Science
FIN: M.Sc. DKE (alt) - Bereich Fundamentals
FIN: M.Sc. DKE (alt) - Bereich Methods II
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten = 56h:
2 SWS Vorlesung
2 SWS Übung
Arbeiten = 94h:
Übungsaufgaben & Klausurvorbereitung
Master: + 30h zusätzliche Aufgabe |
| Kreditpunkte: | Bachelor: 5
Master: 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Datenbanken [100391] |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Kenntnisse über die Funktionsweise von Datenbankmanagementsystemen
Befähigung zum physischen Entwurf von Datenbanksystemen |
Befähigung zur Administration und zum Tuning von Datenbanksystemen
Befähigung zur Entwicklung von Komponenten von Datenbankmanagementlösungen

Inhalt:
- Aufgaben und Prinzipien von Datenbanksystemen
- Architektur von Datenbanksystemen
- Verwaltung des Hintergrundspeichers
- Dateiorganisation und Zugriffsstrukturen
- Zugriffsstrukturen für spezielle Anwendungen
- Basisalgorithmen für Datenbankoperationen
- Optimierung von Anfragen

Studien-/ Prüfungsleistungen:
Erfolgreiche Bearbeitung von Semesteraufgaben (Ausgabe zum Beginn des Semesters)
Prüfung/Schein: schriftlich

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Deep Learning for Computer Vision</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Deep Learning for Computer Vision</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DLCV</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur Bildverarbeitung/Bildverstehen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Vasileios Belagiannis</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>In class teaching: 2 SWS lecture / 2 SWS tutorial</td>
</tr>
<tr>
<td></td>
<td>Self-study: Self-study of lecture material</td>
</tr>
<tr>
<td></td>
<td>Active participation in the lecture and successful participation in the project</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 Credit Points = 180 h (56h in class + 124h self study), grading scheme according to exam regulations</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>none</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Programming skills, basic knowledge in deep learning in connection to computer vision.</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Learning of the basics of deep learning with focus on computer vision. Principles of neural networks, including convolutional neural networks, recurrent neural networks, and graph models. Exercises with the implementation of standard models for classification or regression.</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Written exam 120 min.</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Deep Learning for Weather and Climate</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Deep Learning for Weather and Climate</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>DLWC</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Blockseminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>In class teaching:</td>
</tr>
<tr>
<td></td>
<td>2 SWS lecture / 2 SWS tutorial</td>
</tr>
<tr>
<td></td>
<td>Self-study:</td>
</tr>
<tr>
<td></td>
<td>Self-study of lecture material</td>
</tr>
<tr>
<td></td>
<td>Solution of exercises and assignments</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 Credit Points = 180 h (56 in class + 124 self-study and work on project), grading scheme according to exam regulations</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>None</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Knowledge from the courses:</td>
</tr>
<tr>
<td></td>
<td>- Introduction + Advanced Deep Learning</td>
</tr>
<tr>
<td></td>
<td>- Scientific Computing I+II</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Climate change is one of the fundamental challenges facing humanity. Existing climate simulations provide important insights into how humans affect and are affected by climate change. However, these simulations also still have substantial deficiencies, e.g. in the representation of uncertainties and of</td>
</tr>
</tbody>
</table>
The profound recent advances in deep learning provide a new tool to address these deficiencies, in particular given the petabytes of domain data available for training. In this seminar, we will discuss some fundamentals of Earth system modeling and climate and weather simulations. Then, students will explore the subjects by implementing small prototype systems (using prepared datasets and auxiliary code).

Inhalt:

- Fundamentals of Earth system modeling for weather and climate
- Implementation and presentation of simple case studies of how deep learning methods can help to better understand climate change

Studien-/Prüfungsleistungen: Presentation

Medienformen: Board, slides, code examples, videos

Literatur:

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Design Repertoire</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Design Repertoire</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Steffi Hußlein</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum; Seminar; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten 2 SWS Seminar 2 SWS Praktikum Selbständige Arbeit: 80 h Selbständige Übungsarbeiten 20 h Rechercharbeit 20 h Präsentationsvorbereitung und Dokumentation 180h = (4 SWS = 60 h Präsenzzeit + 120 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt:
Systematische Kompetenzentwicklung durch Anwendung der Lösungsstrategien des Design Repertoires am Beispiel anwendungs-orientierter Aufgaben.
Schwerpunkte:
- Interaktionsformate für Screenbased Interaction analysieren, strukturieren, designen und entwickeln
- Interaktionsformate für TUI, NUI analysieren, strukturieren, designen und entwickeln
- Information Design, GUI Design und Informationsarchitektur für interactive Systeme, Services und Apps
Im Fokus steht die Entwicklung einer eigenen Gestaltungskompetenz sowie die Ausbildung eines individuellen Gestaltungsrepertoires für den Entwurfsprozess des Interaction Designs
Repetoire Bildung
Vermittlung theoretisch-gestalterischer und konzeptioneller Grundlagen der visuellen Kommunikation für Screen Design
Vertiefen von Methodiken der Gestaltung von Informations- und Bedienstrukturen in dynamischen Prozessen interaktiver Systeme
Entwickeln von eigener Gestaltungskompetenz

Studien-/ Prüfungsleistungen:
Leistungen: Präsenz, Teilnahme am interdisziplinären Entwurf des Teams mit informatikspezifischen Beiträgen, Beteiligung an der öffentlichen Präsentation und Beitrag zur gemeinsamen Dokumentation des Entwurfs.
Prüfung: mündlich

Medienformen:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Design-Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Design project</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DSP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform / SWS:</th>
<th>Übung; Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 56 h</td>
</tr>
<tr>
<td></td>
<td>2 SWS Seminar</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Bachelor: Selbstständiges Arbeiten = 94 h</td>
</tr>
<tr>
<td></td>
<td>Master: Selbstständiges Arbeiten = 124 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5 CP</td>
</tr>
<tr>
<td></td>
<td>Master: 6 CP</td>
</tr>
</tbody>
</table>

Voraussetzungen nach Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Ziele der Lehrveranstaltung sind:
	- Entwicklung eines Verständnisses für Industrie-Design

Seite 150 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Inhalt: Im Rahmen dieser Lehrveranstaltung sollen die Studierenden ihre neu gewonnenen Erkenntnisse in Bezug auf Design praktisch auf IKT-Produkte anwenden. Hierbei wird sich vor allem auf die von Dieter Rams entwickelten „Zehn Thesen des Guten Designs“ konzentriert.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Deutsch als Fremdsprache A2 BiBa</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>German as a Foreign Language A2 BiBa</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DaF-A2 BiBa</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Claudia Krull</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Sprachenzentrum</td>
</tr>
<tr>
<td>Sprache:</td>
<td>---</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. BiBalNF - Bereich Sprache</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>8 SWS</td>
</tr>
<tr>
<td>4 SWS Semesterbegleitend, 4 SWS in 3 Wochen als Intensivkurs in der vorlesungsfreien Zeit</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Nachgewiesener Sprachlevel A1</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Deutsch Level A2 nach CEFR</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung auf Sprachlevel A2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Deutsch als Fremdsprache B1 BiBa</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>German as a Foreign Language B1 BiBa</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DaF-B1 BiBa</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Claudia Krull</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Sprachenzentrum</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. BiBaINF - Bereich Sprache</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>8 SWS</td>
</tr>
<tr>
<td></td>
<td>4 SWS Semesterbegleitend, 4 SWS in 3 Wochen als Intensivkurs in der vorlesungsfreien Zeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>bestandener Sprachlevel A2</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Deutsch Level B1 nach CEFR</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Prüfung auf Sprachlevel B1</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Deutsch als Fremdsprache B2 BiBa</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>German as a Foreign Language B2 BiBa</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>DaF-B2 BiBa</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DaF-B2 BiBa</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Beginn jedes Wintersemester über 2 Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Claudia Krull</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Sprachenzentrum</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. BiBalINF - Bereich Sprache</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>8 SWS</td>
</tr>
<tr>
<td></td>
<td>2 x 4 SWS semesterbegleitend über 2 Semester</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>bestandener Sprachlevel B1</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Deutsch Level B2 nach CEFR</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung auf Sprachlevel B2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung: Digital Engineering Project
engl. Modulbezeichnung: Digital Engineering Project
ggf. Modulniveau: Digital Engineering Project
Kürzel: DE-Projekt
ggf. Untertitel: Angebotsspezifisch
ggf. Lehrveranstaltungen: Angebotsspezifisch
Studiensemester: M.Sc. ab 3./4. Semester
Semesterlage: Angebotsspezifisch
Modulverantwortliche(r): Angebotsspezifisch
Dozent(in): Angebotsspezifisch
Sprache: Englisch
Zuordnung zum Curriculum: FIN: M.Sc. DIGIENG - Digital Engineering Projekt
Lehrform / SWS: Projekt
Arbeitsaufwand: Betreute Projektarbeit, Teamarbeit, Selbststudium, Präsentationen
360h = 12 Wochen a 30 Stunden
Kreditpunkte: 12

Voraussetzungen nach Prüfungsordnung: Angebotsspezifisch
Empfohlene Voraussetzungen: Angebotsspezifisch

Studien-/Prüfungsleistungen: Angebotsspezifisch
<p>| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digital Information Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Digital Information Processing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. A. Wendemuth, FEIT-IESK</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. A. Wendemuth, FEIT-IESK</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
</tbody>
</table>
| **Arbeitsaufwand:** | Time of attendance
2 hours/week - lecture
1 hours/week - exercises
Autonomous work: post processing of lectures preparation of exercises and exam
120 h (42 h time of attendance and 78 h autonomous work) |
| **Kreditpunkte:** | 4 |
| **Voraussetzungen nach Prüfungsordnung:** | Bachelor in Electrical Engineering or related studies
Knowledge of signals and systems, Analog Fourier transformations |
| **Empfohlene Voraussetzungen:** | |
| **Angestrebte Lernergebnisse:** | The participant has an overview of basic problems and methods of digital signal processing. The participant understands the functionality of a digital signal processing system and can mathematically explain the modus of operation. The participant can assess applications in terms of stability and other markers. He / She can calculate the frequency response and reconstruction of analogue signals. The participant can perform these calculations and assessments as well on stochastically excited digital systems. The participant can apply this knowledge in a field of specialization, e.g. Medical Signal Analysis |
| **Inhalt:** | Digital Signals and Digital LTI Systems
Z-Transform and Difference Equations
Sampling and Reconstruction
Synthesis and analysis of such systems
Discrete and Fast Fourier Transformations |
<table>
<thead>
<tr>
<th>Processing of Stochastic Signals by LTI-Systems: Correlation Techniques and Model-Based Systems (ARMA) Selected Specialization Topics, e.g. Medical Signal Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen: Mandatory participation in exercise classes, successful results in exercises / written exam at the end of the course</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td>1 SWS Übung</td>
</tr>
<tr>
<td>1 SWS Praktikum</td>
</tr>
<tr>
<td>Selbständiges Arbeiten:</td>
</tr>
<tr>
<td>Nachbereiten der Vorlesung und Übung, Lösen der Übungsaufgaben</td>
</tr>
<tr>
<td>Anfertigen eines Unterrichtsprojektes für Notebooks unter Verwendung von Klassentreibern und interaktiven Whiteboards</td>
</tr>
<tr>
<td>Prüfungsvorbereitung</td>
</tr>
<tr>
<td>Bachelor:</td>
</tr>
<tr>
<td>5 Credit Points = 150 h (56 Stunden Präsenzzeit in den Vorlesungen und Übungen + 94 Stunden selbständige Arbeit)</td>
</tr>
<tr>
<td>Master:</td>
</tr>
<tr>
<td>6 Credit Points = 180 h (56 Stunden Präsenzzeit in den Vorlesungen und Übungen + 124 Stunden selbständige Arbeit) durch Zusatzleistung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
</tbody>
</table>
können digitale Tafelbilder unter Einbeziehung multimedialer Komponenten im Unterricht erstellen
sind in der Lage, digitale Mess- und Aufnahmesysteme in Verbindung mit interaktiven Displays zu nutzen
kennen Methoden, um mit Notebook-Klassen mit interaktiven Displays zu unterrichten und didaktische Klassenraumsteuerungen einzusetzen

| Inhalt: | Grundlagen der Visualisierung und WahrnehmungNutzung von interaktiven Tafeln im Unterricht Einbindung multimedialer Komponenten in die Tafelbildgestaltung digitales Experimentieren im naturwissenschaftlichen Unterricht Unterrichtsmethoden für interaktiven Tafeln, Klassenraumsteuerungen und Notebook-Klassen Lernstanderhebungen in Notebook-Klassen Entwickeln von fachspezifischen Unterrichtsprojekten rechtliche Grundlagen und gesellschaftliche Auswirkungen der Mediennutzung |

| Studien-/ Prüfungsleistungen: | Prüfung: Wiss. Projekt |

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digitale Planung in der Automatisierungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Digitale Planung in der Automatisierungstechnik</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Digitale Planung in der Automatisierungstechnik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Christian Diedrich, FEIT-IFAT</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Christian Diedrich, FEIT-IFAT</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Prüfungsordnung:</td>
</tr>
<tr>
<td>Präsenzzeiten:</td>
<td>Die Lehrveranstaltung ist geeignet für Studierende</td>
</tr>
<tr>
<td>wtl. Vorlesungen 2 SWS; Übungen 1 SWS</td>
<td>ingenieurwissenschaftlicher Studiengänge.</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td></td>
</tr>
<tr>
<td>Nacharbeiten der Vorlesung; Lösung der Übungsaufgaben und</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorbereitung</td>
<td></td>
</tr>
<tr>
<td>120 h (42 h Präsenzzeit + 78 h selbstständige Arbeit)</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Die Lehrveranstaltung ist geeignet für Studierende</td>
<td></td>
</tr>
<tr>
<td>ingenieurwissenschaftlicher Studiengänge.</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Planungsprozess mit den Phasen des Projektmanagement</td>
</tr>
<tr>
<td>Planung mittels moderner CAD-Systeme</td>
<td></td>
</tr>
<tr>
<td>Spezielle Anforderungen und Beispiele aus der Verfahrens- und</td>
<td></td>
</tr>
<tr>
<td>Fertigungstechnik</td>
<td></td>
</tr>
<tr>
<td>Informationstechnische Betrachtung der technisch-</td>
<td></td>
</tr>
<tr>
<td>organisatorischen Prozesse</td>
<td></td>
</tr>
<tr>
<td>Umgang mit einem industriellen Planungswerkzeug (z.B.</td>
<td></td>
</tr>
<tr>
<td>COMOS)</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die Planung von fertigungs- und verfahrenstechnischen Anlagen,</td>
</tr>
<tr>
<td></td>
<td>insbesondere der automatisierungstechnischen Komponenten</td>
</tr>
<tr>
<td></td>
<td>ist ein komplexes Wissens- und Lehrgebiet, das in den letzten</td>
</tr>
<tr>
<td></td>
<td>Jahren auf eine solide wissenschaftliche Basis gestellt wurde.</td>
</tr>
<tr>
<td></td>
<td>Ausbildungsziel der Vorlesung ist es, diese konzeptionellen und</td>
</tr>
<tr>
<td></td>
<td>methodischen Grundlagen systematisch zu vermitteln. Die</td>
</tr>
<tr>
<td></td>
<td>einzelnen Phasen und Inhalte des durchgängigen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Pflichtteilnahme an den Übungen, erfolgreiche Durchführung der Übungen, Prüfungsklausur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Digitaler Schaltungsentwurf mit FPGAs</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Digitaler Schaltungsentwurf mit FPGAs</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Digitaler Schaltungsentwurf mit FPGAs</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Thilo Pionteck (FEIT-IKT)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Thilo Pionteck (FEIT-IKT)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, zweiwöchentliche Übungen 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Nacharbeiten Vorlesung, Lösung Übungsaufgaben und Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>3 SWS / 4 Credit Points = 120 h (42 h Präsenzzeit + 78 h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Elektrotechnischer Schaltungstechnik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und erworbene Kompetenzen:</td>
</tr>
</tbody>
</table>
| | Nach dem erfolgreichen Abschluss des Moduls sollen Studierende selbständig anhand einer nicht-formalen Beschreibung eines digitalen Systems eine digitale Schaltung mit VHDL entwerfen können. Sie können syntheseegerechte VHDL-Beschreibungen erstellen und die Auswirkungen unterschiedlicher Beschreibungsstile auf das Syntheseergebnis abschätzen. Die Studierenden sind in der Lage, den VHDL-Simulationszyklus zu erläutern, ebenso die Besonderheiten beim Schaltungsentwurf für FPGAs. Sie können die unterschiedlichen Schritte bei der Synthese benennen und erläutern, wie Verfahren zur Abschätzung von Syntheseergebnissen funktionieren. In praktischen Übungen erlernen die Studierenden, selbständig Standardkomponenten zu erstellen,
auf einem FPGA auszutesten und in ein größeres Projekt zu integrieren.

<p>| Studien-/Prüfungsleistungen: | Bearbeitung der Übungsaufgaben, mündliche Prüfung |
| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digitalhandwerk</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Digital craft</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DHW</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform / SWS:</th>
<th>Übung; Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 56 h</td>
</tr>
<tr>
<td></td>
<td>2 SWS Seminar</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Bachelor: Selbstständiges Arbeiten = 94 h</td>
<td></td>
</tr>
<tr>
<td>Master: Selbstständiges Arbeiten = 124 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>Bachelor: 5 CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master: 6 CP</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen nach Prüfungsordnung:	
Empfohlene Voraussetzungen:	
Angestrebte Lernergebnisse:	Die Ziele der Lehrveranstaltung sind:
	-Reflektion des persönlichen Zugangs zur Informatik
	-Verschmelzen der Konkreten Kunst und Informatik mit den
Ideen der Bauhaus-Vorkurse:	
• Immaterielles materialisieren	
• Informatik zum Anfassen	
- Entwicklung einer eigenständigen Idee für einen Vorkurs für die Informatik	
- Erstellung dreidimensionaler Modelle erlernen	

| Inhalt: |
| Im Rahmen dieser Lehrveranstaltung sollen die Studierenden einen künstlerisch-gestalterischen Einblick in die Informatik erlangen. Hierzu setzen Sie sich unter anderem mit den folgenden Themen auseinander: |
| - 3D-Druck und 3D-Scan |
| - Konkrete Kunst |
| - Vorkurse des Bauhauses |
| - Designtheorie |
| - Farblehre und künstlerische Gestaltung |
| - Digitalisierung |

| Studien-/ Prüfungsleistungen: |

| Medienformen: |
| Literatur: |

Seite 166 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Distributed Data Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Distributed Data Management</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Distributed Data Management</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>DDM</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Eike Schallehn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods II</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180h (56 h contact hours + 124 h self-study)</td>
</tr>
<tr>
<td></td>
<td>Lectures (2 SWS) and exercises (2 SWS)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Database introduction course</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Comprehension of basic principles and advantages of distributed data management</td>
</tr>
<tr>
<td></td>
<td>Competence to develop distributed databases</td>
</tr>
<tr>
<td></td>
<td>Comprehension of query and transaction processing in distributed and parallel databases</td>
</tr>
<tr>
<td></td>
<td>Competence to optimize the run-time performance and satisfy requirements regarding reliability and availability of distributed systems</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Overview and classification of distributed data management (distributed DBMS, parallel DBMS, federated DBMS, P2P) Distributed DBMS: architecture, distribution design, distributed query processing and optimization, distributed transactions, and transactional replication</td>
</tr>
<tr>
<td>Parallel DBMS: fundamentals of parallel processing, types of parallelization in DBMS, parallel query processing</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Exam requirements: Participation and active involvement in the course and the exercises</td>
<td></td>
</tr>
<tr>
<td>Examination: written (120 minutes)</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Effiziente Programmierung und Ein-/Ausgabe</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Efficient Programming and Input/Output</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EPEA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Michael Kuhn</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Michael Kuhn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenz: 2 SWS Seminar (28h) Selbstständiges Arbeiten: Bearbeiten und Präsentieren des gewählten Themas, Nachbereiten der Präsentationen, Erstellen der schriftlichen Ausarbeitung (122h)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundlegende Programmierkenntnisse Kenntnis der Grundmechanismen von Betriebssystemen (z. B. Technische Informatik) Grundkenntnisse in Rechnerarchitekturen sowie Algorithmen und Datenstrukturen</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Die Teilnehmenden lernen, ein gegebenes Thema selbstständig zu erarbeiten und den anderen Teilnehmenden in verständlicher Weise zu präsentieren.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die optimale Nutzung moderner Rechnerarchitekturen ist keine einfache Aufgabe, weshalb Wissenschaftlerinnen und Wissenschaftler bei der Entwicklung effizienter Anwendungen vor immer neue Herausforderungen gestellt werden. Insbesondere die Ein-/Ausgabe stellt dabei häufig einen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referat</td>
</tr>
<tr>
<td>Schriftliche Ausarbeitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Einführung in das Wissenschaftliche Rechnen</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Scientific Computing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Juniorprofessur für Echtzeit-Computergraphik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Computer Games</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung / 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Nacharbeiten der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Lösung der Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>150 h (56h Präsenzzeit + 94h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse Lineare Algebra</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Angestrebte Kenntnisse:</td>
</tr>
<tr>
<td></td>
<td>Verständnis der Grundwerkzeuge für wissenschaftliches Rechnen (Computergraphik, Computer Vision, Machine Learning, ...)</td>
</tr>
<tr>
<td></td>
<td>Verständnis der grundlegenden Konzepte der linearen Algebra</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Computertomographie: Numerische Lösung von Gleichungssystemen Gesichtserkennung: Singulärwertzerlegung</td>
</tr>
<tr>
<td></td>
<td>Interpolation: Animationen in der Computergraphik</td>
</tr>
<tr>
<td></td>
<td>Audioverarbeitung: diskrete Fouriertransformation</td>
</tr>
<tr>
<td></td>
<td>Nichtlineare Optimierung: Posterize</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beispielprogramme</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Angewandte Ontologie</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Applied Ontology</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IntOnt</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Theoretische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Fabian Neuhaus</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>wöchentliche Vorlesung 2SWS, wöchentliche Übung 2 SWS Selbständiges Arbeiten: Bearbeiten der Übungen und zugeordneter Probleme Nachbereitung der Vorlesung Literaturvertiefung 180h = 4SWS = 56h Präsenzzeit + 124h selbständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Einführung in die Logik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Verständnis logischer Grundlagen der angewandten Ontologie Verständnis grundlegender Konzepte und Methoden der angewandten Ontologie. Überblick über relevante Software Tools (editing/reasoning) Fähigkeit einfache Ontologien selbst zu entwickeln</td>
</tr>
</tbody>
</table>
| Studien-/ Prüfungsleistungen: | Pflichtteilnahme an den Übungen und Präsentation in den Übungen
Prüfung: mündlich |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Einführung in die Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Entrepreneurship, Professur für Internationales Management</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Entrepreneurship, Professur für Internationales Management</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. WIF - Verstehen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Digital Humanities</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Digital Humanities</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EinfDH</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung |
| Arbeitsaufwand: | Bachelor: 5 Credit Points = 150h
2 SWS = 28 Stunden Präsenzzeit + 122 selbständige Arbeit |
| Kreditpunkte: | 5 |
| Angestrebte Lernergebnisse: | Planung und Durchführung interdisziplinären Projekten
Anforderungsanalyse
Digitale Prozesse verstehen und analysieren
Interdisziplinären Kontext meistern |
| Inhalt: | Einführung in Digital Humanities (Geisteswissenschaften-Sicht)
Einführung in Digital Humanities (Informatik-Sicht)
Linguistik und sprachliche Verarbeitung
Daten und Wissensrepräsentation
Interdisziplinäre Arbeit und Kommunikation
Digital Humanities Projekte: International TextbookCat / Welt der Kinder / World Views
Visualisierung und Interaktion mit Daten und Wissen |
<p>| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Einführung in die Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>Einf. INF</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professoren der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Christian Rössl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Gestalten</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Tutorium</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>4 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Tutorium</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Lösung der Übungsaufgaben einschließlich Tutoraufgaben und Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>300 h = 7 SWS = 98 h Präsenzzeit + 202 h selbständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>10</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbe Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Erwerb von Grundkenntnissen über die Konzepte der Informatik</td>
</tr>
<tr>
<td></td>
<td>Befähigung zu Lösung von algorithmischen Aufgaben und zum Design von Datenstrukturen</td>
</tr>
<tr>
<td></td>
<td>Vertrautheit mit der informatischen Denkweise beim Problemlösen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundkonzepte in JavaFunktionen</td>
</tr>
<tr>
<td></td>
<td>Objektorientierte Programmierung</td>
</tr>
<tr>
<td></td>
<td>Programmierparadigmen</td>
</tr>
<tr>
<td></td>
<td>Ausgewählte Algorithmen: Suchen und Sortieren</td>
</tr>
<tr>
<td></td>
<td>Analyse von Algorithmen: Korrektheit und Komplexität</td>
</tr>
<tr>
<td></td>
<td>Grundlegende Datenstrukturen und abstrakte Datentypen</td>
</tr>
<tr>
<td></td>
<td>Berechenbarkeit und Entscheidbarkeit</td>
</tr>
</tbody>
</table>

Inhaltsverzeichnis
| Studien-/ Prüfungsleistungen: | Prüfung: Klausur 120 Min.
Prüfungsvorleistungen: erfolgreiches Bearbeiten der Übungsaufgaben (Votierung) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>
| Literatur: | Saake/Sattler: Algorithmen und DatenstrukturenGoodrich/Tamassia: Data Structures and Algorithms in Java
Sedgewick: Algorithms |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Einführung in die Kommunikationstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Communications technology</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Hochfrequenz- und Kommunikationstechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Abbas Omar</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Bildinformationstechnik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Elektrotechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 4SWS Wöchentliche Vorlesungen Selbstständiges Arbeiten 150 h (56 h Präsenzzeit + 94 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik, Physik, Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Behandlung ausgewählter Fehlerkorrigierender Decodierungsverfahren.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1. Einführung in die Kommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Mathematische Darstellung der Signale als Informationsträger im Zeit- und Frequenzbereich (Fourier-Reihe und Fourier-Transformation)</td>
</tr>
<tr>
<td></td>
<td>Die Abtasttheorie und die Digitalisierung der Signale</td>
</tr>
<tr>
<td></td>
<td>Quellencodierung und Datenkompression</td>
</tr>
<tr>
<td></td>
<td>Mathematische Beschreibung des Rauschens</td>
</tr>
<tr>
<td></td>
<td>Rauschverhalten der Übertragungskanäle; Berechnung der Bitfehlerrate</td>
</tr>
<tr>
<td></td>
<td>Behandlung ausgewählter digitaler Übertragungssysteme im Basis-band (PCM, DPCM,)</td>
</tr>
<tr>
<td></td>
<td>Behandlung ausgewählter digitaler Übertragungssysteme im Pass-band (ASK, PSK, FSK, QAM,)</td>
</tr>
<tr>
<td>2. Informations- und Codierungstheorie</td>
<td>Informationsgehalt und Entropie diskreter Informationsquellen.</td>
</tr>
<tr>
<td></td>
<td>Redundanz, Gedächtnis und Quellencodierung (Shannon-Fano- und Huffmann-Verfahren).</td>
</tr>
<tr>
<td></td>
<td>Kontinuierliche Quellen.</td>
</tr>
<tr>
<td></td>
<td>Diskrete und kontinuierliche Kanäle, Kanalentropien und Kanalkapazität</td>
</tr>
<tr>
<td></td>
<td>Kanalcodierung und Hamming-Raum</td>
</tr>
<tr>
<td></td>
<td>Lineare Blockcodes</td>
</tr>
<tr>
<td></td>
<td>Zyklische Codes</td>
</tr>
<tr>
<td></td>
<td>Syndromdecodierung</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>siehe Script</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die medizinische Bildgebung</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Medical Imaging</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Medizinische Telematik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Medizinische Telematik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Anwendungsfach - Bildinformationstechnik
FIN: B.Sc. CV - Anwendungsfach - Medizintechnik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung (1 SWS optionale Übung)
Selbständiges Arbeiten:
Eigenständige Vor- und Nachbereitung
90h = 2 SWS = 28h Präsenzzeit + 62h selbstständiges Arbeiten |
| Kreditpunkte: | 3 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Grundlagen der Bildverarbeitung |
| Angestrebte Lernergebnisse: | Lernziele & zu erwerbende Kompetenzen:
Die Studierenden sind in der Lage:
die wichtigsten Modalitäten (Verfahren) sowie ihre Einsatzgebiete (medizinischen Fragestellungen) anzugeben,
die prinzielle Funktionsweise jeder Modalität zu beschreiben
die Eignung einer Modalität für eine Untersuchung mit der Abwägung der Vor- und Nachteile zu begründen,
die technischen Herausforderungen und die wichtigsten Nachteile zu benennen. |
| Inhalt: | Bildgebung ist heutzutage die wichtigste medizinische Diagnostikform. Die Wahl der richtigen Modalität mit Abwägung der Vor- und Nachteile sowie die Einstellung der optimalen Parameter ist eine zentrale Aufgabe.
In dieser Veranstaltung wird eine Übersicht über die Modalitäten der modernen medizinischen Bildgebung gegeben. |
Dabei wird das Prinzip, die Funktionsweise sowie die wichtigsten medizinischen Anwendungen vorgestellt und die Vor- und Nachteile bezüglich der Bildqualität und Risiken für den Patienten diskutiert.

Inhalte:
- Röntgendiffeleuchtung
- Computertomographie
- Nukleare medizinische Bildgebung (PET, SPECT)
- Kernspintomographie
- Ultraschall-Bildgebung

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Prüfung: schriftlich</th>
</tr>
</thead>
</table>

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Einführung in die Systemtheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to systemstheory</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Systemtheorie und Regelungstechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Elektrotechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung 2 SWS Übung Selbstständiges Arbeiten: Eigenständige Vor- und Nachbereitung 180h = 4 SWS = 56h Präsenzzeit + 124h selbständiges Arbeiten</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung: schriftlich (120 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Verfahrenstechnik</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Einführung in die Verfahrenstechnik</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EinfVT</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Hanke-Rauschenbach, Max-Planck-Institut; Jun.-Prof. Metzger, Institut für Verfahrenstechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Hanke-Rauschenbach, Jun.-Prof. Metzger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Verfahrenstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>1 SWS Vorlesung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Erste Kenntnisse über Fragestellungen, Werkzeuge und Einsatzgebiete der Verfahrenstechnik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>1. Was ist Verfahrenstechnik?</td>
<td></td>
</tr>
<tr>
<td>2. Waschmittel, Tenside und Pharmaka</td>
<td></td>
</tr>
<tr>
<td>3. Grundlagen der Modellierung und Simulation verfahrenstechnischer Prozesse – Was hat ein Informatiker mit Verfahrenstechnik zu tun?</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Volkswirtschaftslehre</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Einführung in die Volkswirtschaftslehre</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EVWL</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Wirtschaftspolitik (VWL3), FWW</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. S. Hoffmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. WIF - Verstehen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in die Wirtschaftsinformatik</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Business Informatics (Introduction)</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EWIF</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Klaus Turowski</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>BSc KWL, Pflichtfach, WI 1.1</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeiten:</td>
<td>28h Vorlesung</td>
</tr>
<tr>
<td></td>
<td>28h Übung</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Vor- und Nachbereitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Entwicklung von Lösungen in der Übung</td>
</tr>
<tr>
<td></td>
<td>150h</td>
</tr>
<tr>
<td>Vorlesung 2 SWS = 28h Präsenzzeit + 62h selbstständige Arbeit</td>
<td></td>
</tr>
<tr>
<td>Übung 2 SWS = 28h Präsenzzeit + 32h selbstständige Arbeit</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Schaffung eines Grundverständnisses für die Wirtschaftsinformatik als Fachdisziplin und Wissenschaft Erlernen der Grundbegriffe der Wirtschaftsinformatik Aneignung von Breitenwissen über die verschiedenen Fachgebiete der Wirtschaftsinformatik Aneignung von Programmierungstechniken der Individuellen Datenverarbeitung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Definition und Einordnung der WirtschaftsinformatikBerufsbilder für Wirtschaftsinformatiker WirtschaftsinFORMATIK als Wissenschaft Grundbegriffe der Wirtschaftsinformatik Anforderungsmanagement</td>
</tr>
</tbody>
</table>

Seite 187 **Inhaltsverzeichnis**
| Modellierung von betriebswirtschaftlichen Strukturen und Prozessen |
| Erarbeitung von betriebswirtschaftlichen Problemlösungen mit Endbenutzerwerkzeugen |
| Studien-/Prüfungsleistungen: |
| Vorleistungen entsprechend Angabe zum Semesterbeginn |
| Schriftliche Prüfung, 120 Min |
| Medienformen: |
| Literatur: |
| Enzyklopädie der Wirtschaftsinformatik (http://www.enzyklopaedie-der-wirtschaftsinformatik.de/) |
Modulbezeichnung: Einführung in die Wissensrepräsentation
engl. Modulbezeichnung: Introduction to knowledge representation
Kürzel: KR
Untertitel: ggf.
Lehrveranstaltungen: ggf.
Studiensemester: B.Sc. ab 4. Semester; M.Sc. ab 1. Semester
Semesterlage: Wintersemester
Modulverantwortliche(r): Dr. Fabian Neuhaus
Dozent(in): Dr. Fabian Neuhaus
Sprache: deutsch

Zuordnung zum Curriculum:
FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Data Processing for Data Science
FIN: M.Sc. DKE (alt) - Bereich Models
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik

Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeiten: 2 SWS Vorlesung + 2 SWS Übung
Selbstständiges Arbeiten:
Vor- und Nachbearbeitung der Vorlesung
Entwicklung von Lösungen für die Übungsaufgaben
Vorbereitung für die Abschlussprüfung
6 CP = 56h Präsenzzeit+124h selbständige Arbeit

Kreditpunkte: 6 CP

Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Erfolgreicher Abschluss des Modul "Logik" bzw. fundiertes Wissen im Bereich der Themen des Moduls "Logik".

Angestrebte Lernergebnisse:
Verständnis der grundlegenden Konzepte und Methoden der Wissensrepräsentation
Verständnis der logischen Grundlagen der für Ontologien und Wissensgraphen relevanten Sprachen
Fähigkeit, einfache Wissensbasen selbst zu entwickeln

Inhalt:
In diesem Modul werden Studierende in die Grundlagen der Wissensrepräsentation eingeführt. Dies geschieht am Beispiel von Technologien, die für die Repräsentation von Wissen in Form von Wissensgraphen und Ontologien verwendet werden. Die angestrebten Lernergebnisse umfassen: (a) ein Verständnis theoretischer Grundlagen der Wissensrepräsentation, (b) die Kenntnis wichtiger Sprachen, Methoden und Werkzeuge, die in der Praxis zur Repräsentation von Wissen verwendet werden und (c) die Fähigkeit, einfache Wissensgraphen und Ontologien selbst zu entwickeln.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistung: regelmäßige Teilnahme an Vorlesung und Übung, erfolgreiche Bearbeitung der Übungsaufgaben</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform: mündlich</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Einführung in Digitale Spiele</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Digital Games</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EIDS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Holger Theisel</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Alexander Dockhorn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Computervisualistik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - Computer Games
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | 150 Std.: 2 Std. Vorl. + 2 Std. Übung = 56 Std. + 94 Std. Selbststudium und praktische Arbeit an einem Prototyp und dessen Präsentation |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Algorithmen und Datenstrukturen |
Verständnis der Komponenten erhalten und diese während der Entwicklung eines Prototyps anwenden.

Inhalt:

<table>
<thead>
<tr>
<th>Game Design</th>
<th>Game Development Software Patterns</th>
<th>2D-3D Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game Concepts</td>
<td>Cameras, Rendering, Animations</td>
<td>Lights, Shadows, Shader</td>
</tr>
<tr>
<td>Physic Engines, Collisions</td>
<td>Audio Engine</td>
<td>Pathfinding, Steering, Navigation</td>
</tr>
<tr>
<td>Procedural Content Generation</td>
<td>Game AI</td>
<td>Prototyping, Playtesting, Publishing</td>
</tr>
</tbody>
</table>

Studien- / Prüfungsleistungen:

Bearbeitung von Übungsaufgaben und deren Präsentation
Erstellung eines Prototyps und dessen Präsentation

Medienformen:

Literatur:

- Steve Rabin: "Introduction to Game Development", Charles River Media, 2010
- Unity Learn: https://learn.unity.com
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Einführung in Managementinformationssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to management information systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EinfMIS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik – Managementinformationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. H.-K. Arndt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik
FIn: B.Sc. INF - WPF Informatik
FIn: B.Sc. INGINF - WPF Informatik
FIn: B.Sc. WIF - Anwenden
FIn: M.Sc. DKE - Applied Data Science
FIn: M.Sc. DKE (alt) - Bereich Applications
WPF WLO-B.Sc. ab 5. Semester (Modul 4 CP)</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:
2 SWS Vorlesung
2 SWS Übung
Selbstständiges Arbeiten:
Vor- und Nachbereitung Vorlesung
Entwicklung von Lösungen in und für die Übung
150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Einführung in die Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:
- Verständnis des Konzepts der Managementsysteme für Organisationen jeglicher Art
- Verständnis von Managementinformationssystemen als informationstechnische Entsprechung von Managementsystemen
- Anwendung einer methodischen Herangehensweise zur Entwicklung von Managementinformationssystemen
- Anwendung von Metainformation und Anwendungsintegration in Managementinformationssystemen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
</tbody>
</table>

Seite 193 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Grundlagen zu Managementsystemen</th>
<th>Grundlagen zu Managementsystemen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managementinformationssysteme als Informationssysteme für Managementsysteme</td>
<td>Managementinformationssysteme als Informationssysteme für Managementsysteme</td>
</tr>
<tr>
<td>Methoden zur Konzipierung und Realisierung von Managementinformationssystemen</td>
<td>Methoden zur Konzipierung und Realisierung von Managementinformationssystemen</td>
</tr>
<tr>
<td>Metainformation in Managementinformationssystemen</td>
<td>Metainformation in Managementinformationssystemen</td>
</tr>
</tbody>
</table>

Studien-/ Prüfungsleistungen:
Das erfolgreiche Absolvieren der Semesteraufgabe ermöglicht den Studierenden die Teilnahme an der Prüfung. Prüfung: schriftliche Prüfung (Klausur) jeweils im SoSe

Medienformen:

Literatur:
Siehe http://bauhaus.cs.uni-magdeburg.de
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Electronic System Level Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Electronic System Level Modeling</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Thilo Pionteck (FEIT-IIKT)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Thilo Pionteck (FEIT-IIKT)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, zweiwöchentliche Übungen 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Nacharbeiten Vorlesung, Lösung Übungsaufgaben und Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>3 SWS / 6 Credit Points = 180 h (42 h Präsenzzeit + 138 h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Bachelor in Elektrotechnik, Mechatronik oder Informatik, Grundkenntnisse in C/C++</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Modellierungskonzepte für komplexe SystemeModellierungssprachenEinführung SystemCRegister-Transfer-Level-Modellierung mit SystemCSimulationsalgorithmusTranscation-Level-Modellierung mit SystemCModellierung zeitlicher AbläufeHigh-Level-Synthese</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung: Elektrische Antriebe I (Elektrische Antriebssysteme I)
engl. Modulbezeichnung: Electrical drives 1
ggf. Modulniveau:
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 5. Semester
Semesterlage:
Modulverantwortliche(r): Professur für Elektrische Antriebe
Dozent(in): Prof. Dr.-Ing. habil. Frank Palis
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Elektrotechnik

Lehrform / SWS: Vorlesung; Übung; Praktikum
Arbeitsaufwand:
Präsenzzeiten:
Wintersemester
2 SWS Vorlesung
1 SWS Übung
Sommersemester
1 SWS Praktikum
Selbstständiges Arbeiten: Übungsvorbereitung
150 h = 4 SWS = 56 h Präsenzzeit + 94 h Selbstständiges Arbeiten

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung: Grundkenntnisse in Elektrischen Maschinen und Aktoren, Leistungselectronik, Steuerungs- und Regelungstechnik

Angestrebte Lernergebnisse: Lernziele und zu erwerbende Kompetenzen:
Auswahl der Struktur elektrischer Antriebssysteme entsprechenden Anforderungen der Arbeitsmaschinen und technologischen Prozesse mit dem Ziel des optimalen Energieeinsatzes sowie Dimensionierung der erforderlichen Baugruppe
Realisierung von Bewegungsvorgängen in Maschinen und Anlagen entsprechend den energetischen, technologischen und automatisierungstechnischen Anforderungen

Inhalt: Aufgaben und Struktur eines elektrischen Antriebssystems, Kenngrößen von Bewegungsvorgängen,
| Mechanik des Antriebssystems (Bewegungsgleichung und Beschreibung der Bewegungsgrößen), typische Widerstandsmomenten- Kennlinien von Arbeitsmaschinen, Anlauf und Bremsung eines Antriebssystems, stabiler Arbeitspunkt, das mechanische Übertragungssystem), stationäres und dynamisches Verhalten von ausgewählten elektrischen Maschinen (Gleichstrom- Nebenschlussmaschinen, Asynchronmaschinen mit Schleifring- und Kurzschlussläufer, Synchron-maschinen), Strukturen binär gesteuerter Antriebssysteme mit Asynchronmaschinen für Anlauf, Bremsung und Drehzahlstellung, Regelstrukturen drehzahl- und lagegeregelter elektrischer Antriebssysteme |
| Studien-/ Prüfungsleistungen: Leistungen: Pflichtteilnahme an den Übungen, erfolgreiche Durchführung des Laborpraktikums (Testat) Prüfung: schriftlich (90 min) |
| Medienformen: Literatur: |
Modulbezeichnung: Elektrische Antriebe II
engl. Modulbezeichnung: Elektrische Antriebe II
ggf. Modulniveau:
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: M.Sc. ab 1. Semester
Semesterlage:
Modulverantwortliche(r): Prof. Dr.-Ing. habil. Frank Palis (FEIT-IESY)
Dozent(in): Prof. Dr.-Ing. habil. Frank Palis (FEIT-IESY)
Sprache: deutsch
Zuordnung zum Curriculum: FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: 3SWS = 150h (42h Präsenzzeit + 108h selbständige Arbeit)
Präsenzeiten: wöchentliche Vorlesungen 2 SWS, wöchentliche Übungen 1 SWS, selbständiges Arbeiten: Nachbereitung der Vorlesung, Lösen der Übungsaufgaben
Kreditpunkte: 5
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Elektrische Maschinen
Elektrische Antriebe I
Regelungstechnik
Angestrebte Lernergebisse: Lernziele und zu erwerbende Kompetenzen
Vermittlung von grundlegenden Kenntnissen zum Systemverhalten und zur Anwendung elektrischer Antriebe
Vermittlung von Fähigkeiten zur Integration von elektrischen Antrieben in komplexen mechanischen Systemen
Inhalt: Auswahl elektrischer Maschinen
Bestimmung der Typenleistung elektrischer Maschinen
Motorschutz
Leistungselektronischer Stellglieder für elektrische Antriebe
Leistungselektronischer Stellglieder für Gleichstromantriebe
Stromrichtergespeiste Gleichstromantriebe
Stromrichtergespeiste Drehstromantriebe
Studien-/Prüfungsleistungen: Prüfung: mündliche Prüfung
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Elektrische Energienetze II - Energieversorgung</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Elektrische Energienetze II - Energieversorgung</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. Zbigniew Antoni Styczynski (FEIT-IESY)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Zbigniew Antoni Styczynski (FEIT-IESY)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>3 SWS = 150h (42h Präsenzzeit +108h selbständige Arbeit)</td>
</tr>
<tr>
<td>Präsenzzeiten: wöchentliche Vorlesung 2 SWS, wöchentliche Übungen 1 SWS, Selbständiges Arbeiten: Nachbereitung der Vorlesung, Lösung der Übungsaufgaben und Prüfungsvorbereitung</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Regelungstechnik, Steuerungstechnik, Ereignisdiskrete Systeme</td>
</tr>
<tr>
<td>Zuverlässigkeitsrechnung im Energienetz</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen: Mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Embedded Bildverarbeitung</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Embedded Bildverarbeitung</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Embedded Bildverarbeitung</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Technische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Technische Informatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen
| | FIN: M.Sc. INGINF - Bereich Ingenieurinformatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | |
| | Präsenzzeiten:
| | 2 SWS Vorlesung
| | 2 SWS Übung
| | Selbstständiges Arbeiten:
| | Übungsvorbereitung
| | 150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Hardwarenahe Rechnerarchitektur, Bildverarbeitung |
| Angestrebte Lernergebnisse: | Lernziele & zu erwerbende Kompetenzen:
| | Die Vorlesung vermittelt Kenntnisse über eingebettete Lösungen der Bildverarbeitung und hat einen engen Bezug zur entsprechenden Hard- und Software sowie Algorithmen der Bildverarbeitung.
| | Es sollen Kompetenzen zur Entwicklung und zum Einsatz solcher Embedded Systems vermittelt werden. |
| Inhalt: | Informationsfluss in einem Bildverarbeitungssystem
| | Kompakte Syteme
| | Spezielle Hardware
| | Signalprozessoren
| | SIMD- Rechner auf einem Chip
| | Hardware/ Software Codesign
| | Anwendungen |
| Kameramit integriertem Kontroller
Stereokopf
Robotik
Fahrerassistenzsysteme (Beispiele)
Algorithmen und ihre Modifikation für die Anwendungen
Kalman-Filter und Sensorfusion mit weiteren Größen
Anwendungsperspektiven |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen: Prüfung: mündlich</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur: siehe Script</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Cultural Studies,</td>
</tr>
<tr>
<td>Media Literacy</td>
</tr>
<tr>
<td>Critical Thinking</td>
</tr>
<tr>
<td>Presentation Skills</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>
Modulbezeichnung:
Entdecken häufiger Muster

engl. Modulbezeichnung:
Frequent Pattern Mining

Kürzel:
FPM

Sprache:
englisch

Zuordnung zum Curriculum:
FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DigiEng - Fachliche Spezialisierung
FIN: M.Sc. DKE - Learning Methods & Models for Data Science
FIN: M.Sc. DKE (alt) - Bereich Methods I
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik
Für Freigabe / Zuordnung zu Curricula von interdisziplinären Studiengängen und von Studiengängen außerhalb der FIN, s. Studiumsdokumente des jeweiligen Studiengangs

Lehrform / SWS:
Vorlesung; Übung; Blockveranstaltung

Arbeitsaufwand:
Präsenzzeiten: 2 SWS Vorlesung + 2 SWS Übung
Selbstständiges Arbeiten:
Vor- und Nachbearbeitung der Vorlesung
Entwicklung von Lösungen für die Übungsaufgaben
Vorbereitung für die Abschlussprüfung
180h = 4 SWS = 40h Präsenzzeit + 140h selbständige Arbeit

Kreditpunkte:
6

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:
Algorithmen und Datenstrukturen
Grundlagen zu: Data Mining

Angestrebte Lernergebnisse:
Lernziele & erworbene Kompetenzen:
Kenntnis der grundlegenden Algorithmentschmata sowie der Standardalgorithmen zum Finden häufiger Muster in Mengen
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Verständnis der notwendigen effizienten Datenstrukturen und Verarbeitungsverfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Einsicht in die besonderen Probleme bei der Analyse strukturierter Daten (Sequenzen, Bäume, allgemeine Graphen) sowie Lösungsansätze</td>
</tr>
<tr>
<td></td>
<td>Befähigung zur Auswahl eines geeigneten Verfahrens je nach Anwendungsproblem</td>
</tr>
<tr>
<td></td>
<td>Befähigung zur Entwicklung spezialisierter Algorithmen zum Finden häufiger Muster</td>
</tr>
<tr>
<td></td>
<td>Umgang mit Literatur zum Fachgebiet</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Finden häufiger Teilmengen (frequent item set mining) und Assoziationsregeln</td>
</tr>
<tr>
<td></td>
<td>Finden häufiger Teilsequenzen (für diskrete und Intervalldaten)</td>
</tr>
<tr>
<td></td>
<td>Finden häufiger Teilbäume und -graphen</td>
</tr>
<tr>
<td></td>
<td>Effiziente Grundalgorithmen und -datenstrukturen</td>
</tr>
<tr>
<td></td>
<td>Vermeidung redundanter Suche bei der Analyse strukturierter Daten, speziell mit Hilfe kanonischer Formen der zu entdeckenden Muster</td>
</tr>
<tr>
<td></td>
<td>Ansätze zur Bewertung und zum Filtern gefundener Muster</td>
</tr>
<tr>
<td></td>
<td>Erweiterungen der Grundalgorithmen für spezielle Anwendungen</td>
</tr>
<tr>
<td></td>
<td>Anwendungsbeispiele, speziell für die Entdeckung häufiger Teilgraphen</td>
</tr>
</tbody>
</table>

Studien-/ Prüfungsleistungen:	Prüfung: mündlich
Medienformen:	Vorwiegend wissenschaftliche Artikel, s. FPM-Webseite
Literatur:	Vorwiegend wissenschaftliche Artikel, s. FPM-Webseite
Modulbezeichnung:
Entwurf und Simulation von Mikrosystemen

engl. Modulbezeichnung:
Entwurf und Simulation von Mikrosystemen

ggf. Modulniveau:
Entwurf und Simulation von Mikrosystemen

Kürzel:

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester:
M.Sc. ab 1. Semester

Semesterlage:
Sommersemester

Modulverantwortliche(r):
Prof. Dr. rer. nat. Bertram Schmidt (FEIT-IMOS)

Dozent(in):
Prof. Dr. rer. nat. Bertram Schmidt (FEIT-IMOS)

Sprache:
deutsch

Zuordnung zum Curriculum:
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung

Lehrform / SWS:
Vorlesung; Übung; Praktikum

Arbeitsaufwand:

<table>
<thead>
<tr>
<th>SWS</th>
<th>Präsenzzeit</th>
<th>Selbstandige Arbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>240h</td>
<td>70h</td>
<td>170h</td>
</tr>
</tbody>
</table>

Präsenzzeiten: Vorlesung 2 SWS, Übung 1 SWS, Laborpraktikum 2 SWS
Selbständiges Arbeiten: Lösung der Übungsaufgaben, Praktikumsvorbereitung, Ausarbeitung Referat, Prüfungsvorbereitung

Kreditpunkte:
8

Voraussetzungen nach Prüfungsordnung:

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodul Bachelor ETIT „Einführung in die Mikrosystemtechnik“</td>
</tr>
<tr>
<td>Wahlpflichtmodul Bachelor „Diskrete Verfahren der Systemsimulation“</td>
</tr>
<tr>
<td>Wahlpflichtmodul Bachelor „Materialien der Elektro- und Informationstechnik“</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse:

<table>
<thead>
<tr>
<th>Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlegender Kenntnisse über mechanische Eigenschaften und Versagenskriterien für Mikrobauteile</td>
</tr>
<tr>
<td>Kenntnisse von Simulationsverfahren (FEM, Systemsimulation) und CAD-Werkzeugen</td>
</tr>
<tr>
<td>Erworbene Kompetenzen:</td>
</tr>
<tr>
<td>Verknüpfung von Technologie, CAD-Entwurf und Simulation</td>
</tr>
<tr>
<td>Umgang mit Simulations- und CAD-Werkzeugen für die Herstellung eines Mikrobauelementes</td>
</tr>
<tr>
<td>Damit werden Fertigkeiten zur Lösung konkreter Aufgabenstellungen im Bereich für Entwurf und Simulation für Mikrosysteme entwickelt.</td>
</tr>
</tbody>
</table>

Seite 208 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Skalierungseffekte und KennzahlenMikrosystementwurf Piezoresistive Sensoren Methoden der Finiten Elemente (FEM) Systementwurf mit VHDL-AMS Design mit CAD-Werkzeugen Designregeln am Beispiel MUMPS-Prozess Mehrlagen-Justierung, Overlay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung, Referat</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung:
Entwurf, Organisation und Durchführung eines Programmierwettbewerbs

engl. Modulbezeichnung:
Entwurf, Organisation und Durchführung eines Programmierwettbewerbs

ggf. Modulniveau:

Kürzel:

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester:
B.Sc. ab 3. Semester

Semesterlage:
Wintersemester

Modulverantwortliche(r):
Dr. Christian Rössl

Dozent(in):
Dr. Christian Rössl

Sprache:
deutsch

Zuordnung zum Curriculum:

- FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Softwareprojekt
- FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK
- FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Softwareprojekt
- FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK
- FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Softwareprojekt
- FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK
- FIN: B.Sc. WIF - Gestalten
- FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK
- FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Softwareprojekt

Lehrform / SWS:
Projekt

Arbeitsaufwand:
150 Std. selbstständiges Arbeiten

Kreditpunkte:
5

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:
Algorithmen und Datenstrukturen

Angestrebte Lernergebnisse:

Inhalt:
Die Teilnehmer entwerfen und organisieren den Programmierwettbewerb zur Vorlesung "Algorithmen und Datenstrukturen", typischerweise ist das ein Computerspiel.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Voraussetzung: Durchführung des Programmierwettbewerbs, Prüfung: Wiss. Projekt, auch als Schein möglich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Erziehungswissenschaft: Interaktive Medien als sozial-kulturelle Phänomene</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Educational Science: Interactive media as socio-cultural phenomena</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Erziehungswissenschaftliche Medienforschung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Erziehungswissenschaftliche Medienforschung</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Allgemeine Visualistik - Erziehungswissenschaft</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Seminar Selbstständiges Arbeiten Präsentation vorbereiten Medienprodukt oder Hausarbeit erstellen 5 x 30h (28 h Präsenzzeit + 122 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Nutzung und Verbreitung interaktiver MedienSubjektive Bedeutsamkeit von interaktiven Medien und Motive der Mediennutzung Sozial-kulturelle Kontexte der Nutzung interaktiver Medien</td>
</tr>
</tbody>
</table>

Seite 212 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Studienleistungen: Präsentation, Hausarbeit oder Medienprodukt Gesamtzahl der Credits für das Modul: 5</td>
</tr>
</tbody>
</table>

Methoden der Analyse und Bewertung interaktiver Medien
Inhaltsanalysen von Video- und Computerspielen
Computerspiele zwischen Faszination und Risiko
Grundlagen, Chancen, Probleme des Jugendmedienschutzes
Konvergenzphänomene im Bereich der (neuen) Medien
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Estimation for Autonomous Mobile Robots</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Estimation for Autonomous Mobile Robots</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>AMR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Benjamin Noack</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Benjamin Noack</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DigiENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DigiENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DigiENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Ingenieurinformatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Attendance time:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Lecture</td>
</tr>
<tr>
<td></td>
<td>2 SWS Exercise</td>
</tr>
<tr>
<td></td>
<td>Independent work:</td>
</tr>
<tr>
<td></td>
<td>Follow-up study, working on exercises</td>
</tr>
<tr>
<td></td>
<td>180 h = 56 h attendance time + 124 h independent work</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Linear Algebra, Analysis</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>You have an overview of basic problems and methods in parameter and state estimation for mobile systems. You understand how to develop kinematic models for mobile robots and how to derive discrete-time prediction models. You are familiar with the required mathematical tools and can derive and apply least-squares methods for localization and tracking of mobile systems, e.g., based on distance measurements. You have a good understanding of Kalman filtering and its nonlinear generalizations for dynamic state estimation and localization of mobile systems.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Kinematics, System Models, and Dead Reckoning for Mobile SystemsSensor Models and Optimization Methods for Localization and TrackingDynamic State Estimation for Real-Time Localization and TrackingLinear Kalman Filtering and Nonlinear Generalizations</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Oral examination</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Digital Notes, Exercise Sheets</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Literature will be announced in the lecture</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Ethische Herausforderungen im Digitalen Zeitalter</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Ethical challenges in the digital era</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Karl Teille, Volkswagen AutoUni, Leiter des Instituts für Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Karl Teille, Volkswagen AutoUni, Leiter des Instituts für Informatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK
FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik
Schlüssel- und Methodenkompetenzen – Wissenschaftliches Seminar |
| Lehrform / SWS: | Vorlesung |
| Arbeitsaufwand: | Vorlesung |
| Kreditpunkte: | 3 |
| Voraussetzungen nach Prüfungsordnung: | Gute Kenntnis mind. einer Programmiersprache, VL Betriebssysteme, Bereitschaft zum interdisziplinären Arbeiten |
| Angestrebte Lernergebnisse: | Ethik als philosophische Disziplin erkennen
| | Fragestellungen der Ethik einordnen
| | Aspekte der Digitalisierung als ethische Herausforderung begreifen |
| Inhalt: | Definition von Ethik
| | Deskriptive Ethik
| | Begründung von Ethik
| | Teleologische Ethik
| | Deontologische Ethik
| | Chancen der Digitalisierung
| | Schranken der kommerziellen Verwertbarkeit von Daten
| | Ethische Herausforderung im Umgang mit persönlichen Daten / Metadaten
| | Erweiterung des Realitätsbegriffes
| | Künstliche Intelligenz und Technologische Singularität
| | Anwendungsgebiete der Digitalisierung
| | Vertrieb
| | Mobilität (Autonomes Fahren; Smart Cars)
| | Autonome Entscheidungen von Maschinen
| | Intelligente, Vernetzte Produktion, Industrie 4.0
| | Autonome Kriegsführung
| Studien-/Prüfungsleistungen: | mündliche Prüfung
| Medienformen: | |
| | Schwägerl, C.: Offline ist so vorbei. Das Internet kommt uns noch näher. In Zeit online, 03.05.2015.

Seite 217 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Eudaimonic Interaction Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Eudaimonic Interaction Design</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EID</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Ernesto William De Luca</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Ernesto William De Luca, Julian Marvin Jörs</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td></td>
</tr>
</tbody>
</table>
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen
FIN: M.Sc. DigiEng - Ingenieurgrundlagen für Informatiker
FIN: M.Sc. DigiEng - Human Factors
FIN: M.Sc. DKE - Learning Methods & Models for Data Science
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Fundamentals
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. IngInf - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Seminar |
| Arbeitsaufwand: | Präsenzzeiten: wöchtl. Blockseminar
Selbstständiges Arbeiten: 94h selbständige Arbeit (Bearbeitung von Übungsaufgaben; Nachbereitung der Vorlesung, Vorbereitung auf die Prüfung)
Projekt für Masterstudierende: 30h Arbeit an einem der vorgeschlagenen Projekte in HCNLP
Master 180h = 56h (4 SWS) Präsenzzeit + 94h selbstständige Arbeit + 30h Projektarbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: |
Empfohlene Voraussetzungen: |
Angestrebte Lernergebnisse: |
Inhalt: |
Studien-/ Prüfungsleistungen: | Leistungen:
• Bearbeitung der Übungen;
• Bearbeitung der Programmieraufgaben;
• Erfolgreiche Präsentation der Ergebnisse des Projekts. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Evolutionäre Algorithmen</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Evolutionäre Algorithmen</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>EA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Intelligente Systeme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Sanaz Mostaghim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Computer Games</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übungen</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit:</td>
</tr>
<tr>
<td></td>
<td>Bearbeiten von Übungs- und Programmieraufgaben</td>
</tr>
<tr>
<td></td>
<td>150 h = 56 h Präsenzzeit + 94 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Programiersprache Java o.ä.</td>
</tr>
<tr>
<td></td>
<td>Algorithmen und Datenstrukturen</td>
</tr>
<tr>
<td></td>
<td>Programmierung, Modellierung</td>
</tr>
<tr>
<td></td>
<td>Mathematik I bis IV</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Anwendung von adäquaten Modellierungstechniken zum Entwurf von Evolutionären Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Anwendung der Methoden der Numerischen Optimierung zur Problemlösung</td>
</tr>
<tr>
<td></td>
<td>Bewertung und Anwendung evolutionärer Programmierung zur Analyse komplexer Systeme</td>
</tr>
<tr>
<td></td>
<td>Befähigung zur Entwicklung von Evolutionären Algorithmen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>kurze Einführung in biologische Grundlagen der Evolution und Genetik</td>
</tr>
<tr>
<td></td>
<td>Ausgestaltung genetischer Operatoren (z.B. Selektion, Kreuzung, Rekombination, Mutation)</td>
</tr>
</tbody>
</table>
Überblick über verschiedene Arten genetischer und evolutionärer Algorithmen und genetischer Programmierung
Erläuterung von Vor- und Nachteilen dieser Algorithmen anhand von Beispielen
Behandlung verwandter Verfahren (z.B. simuliertes Ausglühen)
Anwendungsbeispiele

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung in schriftlicher Form, Umfang: 120 Min.</td>
</tr>
<tr>
<td>Benötigte Vorleistungen:</td>
</tr>
<tr>
<td>Bearbeitung von mindestens zwei Drittel aller Übungsaufgaben im Semester</td>
</tr>
<tr>
<td>Erfolgreiche Präsentation von zwei Übungsaufgaben</td>
</tr>
<tr>
<td>Schein, benötigte Vorleistungen:</td>
</tr>
<tr>
<td>Erfolgreiche Bearbeitung einer Programmieraufgabe zum Thema der Vorlesung (Arbeit in Gruppen mit ein oder zwei Studierenden) inklusive Entwurf, Implementation, Test, Dokumentation und Übergabe, z.B. EA zur Lösung eines Brett- oder Kartenspiels</td>
</tr>
<tr>
<td>Erfolgreiche Teilnahme an der Prüfung (für einen nichtbenoteten Schein muss mindestens die Note 4 erreicht werden)</td>
</tr>
<tr>
<td>Unabhängig von der Art der Studien-/Prüfungsleistung wird eine regelmäßige und aktive Teilnahme an Vorlesung und Übung vorausgesetzt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen: Literatur:</th>
</tr>
</thead>
</table>
Modulbezeichnung: Evolutionary Multi-Objective Optimization
engl. Modulbezeichnung: Evolutionary Multi-Objective Optimization
ggf. Modulniveau: Evolutionary Multi-Objective Optimization
Kürzel: EMO
ggf. Untertitel: ggf. Modulniveau:
ggf. Lehrveranstaltungen: Studiensemester: M.Sc. ab 1. Semester
Semesterlage: Sommersemester
Modulverantwortliche(r): Lehrstuhl für Computational Intelligence
Dozent(in): Prof. Dr.-Ing. Sanaz Mostaghim
Sprache: englisch
Zuordnung zum Curriculum: FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Learning Methods & Models for Data Science
FIN: M.Sc. DKE (alt) - Bereich Models
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeit:
- 2 SWS Vorlesung
- 2 SWS Übungen
Selbstständige Arbeit:
- Bearbeiten von Übungsaufgaben
Kreditpunkte: 6 Kreditpunkte für Master Studenten = 180 h
= 56 h Präsenzzeit + 124 h selbstständige Arbeit
Empfohlene Voraussetzungen: Intelligente Systeme, Optimierungsalgorithmen, Grundlage der evolutionären Algorithmen
Angestrebte Lernergebnisse: - Anwendung der Methoden der Computational Intelligence zur Problemlösung in multi-kriterieller Optimierung
- Befähigung zur Entwicklung der Algorithmen
- Fundiertes Wissen im Bereich der multi-kriteriellen Optimierung
Inhalt: In our daily lives we are inevitably involved in optimization. How to get to the university in the least time is a simple optimization problem that we encounter every morning. Just looking around ourselves we can see many examples of optimization problems even with conflicting objectives and higher complexities. It is natural to want everything to be as good as possible, in other words optimal. The difficulty arises when there are conflicts between different goals and objectives. Indeed, there are many real-world optimization problems with multiple conflicting objectives in science and industry, which are...
of great complexity. We call them Multi-objective Optimization Problems.
Over the past decade, lots of new ideas have been investigated and studied to solve such optimization problems as any new development in optimization which can lead to a better solution of a particular problem is of considerable value to science and industry. Among these methods, evolutionary algorithms are shown to be quite successful and have been applied to many applications.
This course addresses the basic and advanced topics in the area of evolutionary multi-objective optimization and contains the following content:
- Introduction to single-objective optimization (SO) and multiobjective optimization (MO), classical methods for solving MO, definitions of Pareto-optimality and other theoretical foundations for MO
- Basics of evolutionary algorithms (algorithms, operators, selection mechanisms, coding and representations)
- Evolutionary multi-objective algorithms (NSGA-II, EMO scalarization methods such as MOEA/D)
- Large-scale EMO: large scale decision space and many objective optimization (such as NSGA-III)
- Constraint handling in SO and MO, robust optimization in EMO, surrogate methods for expensive function evaluations
- Dynamic EMO
- Evaluation mechanisms (Design of experiments, test problems, metrics, visualization)

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Zum Bestehen der Prüfung oder zum Erwerb eines Scheins sind folgende Leistungen zu erbringen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Regelmäßige Teilnahme und Mitarbeit in Vorlesung und Übung. Erwerb der Zulassungsvoraussetzungen zur Klausur</td>
</tr>
<tr>
<td></td>
<td>- Bestehen der schriftlichen Prüfung, 120 Min.</td>
</tr>
<tr>
<td></td>
<td>Die genauen Zulassungsvoraussetzungen werden zum Anfang der Vorlesung, spätestens bis zum Ende der dritten Vorlesungswoche, auf der Webseite des Lehrstuhls bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>- Deb, Kalyanmoy. Multi-Objective Optimization Using</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>- Deb, Kalyanmoy. Multi-Objective Optimization Using</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Experimentelle Ansätze in der neurobiologischen Lernforschung</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Experimental approaches for learning research in neurobiology</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>LiN</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>A. Brechmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>A. Brechmann, M. Deliano, R. König, A. Schulz</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Anwendungsfach - Medizintechnik
FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing |
| Lehrform / SWS: | Seminar |
| Arbeitsaufwand: | Präsenzzeiten:
1 SWS Vorlesung
30 h Projekt
Vor- und Nachbearbeitung des Vorlesungsstoffs
120h = 44h Präsenzzeit + 76h selbstständige Arbeit |
| Kreditpunkte: | 4 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Teilnahme an der Allgem. Psychologie II Vorlesung |
| Angestrebte Lerenergebnisse: | Lernziele & zu erwerbende Kompetenzen:
Möglichkeiten und Grenzen der gängigen Methoden neurobiologischer Lernforschung an Menschen und Tieren.
Grundlegende Kenntnisse über Reinforcementmodelle, Kategorie- und Sequenzlernen, Arbeitsgedächtnis. |
| Inhalt: | Anhand aktueller Forschungsprojekte am Leibniz-Institut werden methodische Ansätze in der neurobiologischen Lernforschung mittels fMRI, MEG, EEG und Elektrophysiologie vermittelt. Es werden Untersuchungsparadigmen erarbeitet, in Pilotexperimenten erprobt und Einblicke in die Datenanalyse und –interpretation vermittelt. |
| Studien-/ Prüfungsleistungen: | Prüfung: Referat |
| Medienformen: | |
Literatur: siehe https://iwebdav.ifn-magdeburg.de/iwebdav/LearningAndMemorySeminar/
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Fabrikplanung (Factory Operations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Fabrikplanung (Factory Operations)</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Fabrikplanung (Factory Operations)</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Kühne, FMB-IAF</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Kühne, FMB-IAF</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung; 1 SWS Übung Selbstständiges Arbeiten: Begleitendes Selbststudium Prüfungsvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Vgl. Angaben in der Einführungsvorlesung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundbegriffe zur Planung und Gestaltung industrieller Prozesse Auswahlverfahren grundlegender Technologien der verarbeitenden Industrie und deren Einsatzgebiete</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Übungsschein (interne Prüfungsvoraussetzung) Schriftliche Prüfung (Klausur)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Fertigungsplanung</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Manufacturing planning</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Wengler, FMB-IFQ</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Wengler, FMB-IFQ</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung M-MB, M-WMB Ingenieurinformatik, Lehramt für berufsbildende Schulen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung 2 SWS, Übung 1 SWS, selbständiges Arbeiten: Vor- und Nachbereiten der Lehrveranstaltungen, Literaturstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Empfohlen: Grundkenntnisse in der Fertigungslehre (Fertigungsverfahren, Messtechnik, Management)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der Fertigungsplanung,Rohteilvarianten, Flächen am Werkstück, Technologische Basen, Spannmittel, Teilebearbeitungsabläufe mit und ohne Wärmebehandlung, Montage und Demontage von Bauteilen und Produkten, Qualitätsmanagement und Prüfplanung</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Prüfung: Klausur (90min)</td>
</tr>
</tbody>
</table>
Medienformen:

Literatur:
Modulbezeichnung: Filmseminar Informatik und Ethik
engl. Modulbezeichnung: Film Seminar - Computer Science and Ethics

Kürzel:

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester: M.Sc. ab 1. Semester

Semesterlage: Wintersemester

Modulverantwortliche(r): Prof. Gunter Saake

Dozent(in): Dr. Eike Schallehn

Sprache: deutsch

Zuordnung zum Curriculum:

FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik
Studierende FHW entspr. dortiger PO

Lehrform / SWS: Seminar

Arbeitsaufwand:

Präsenzzeiten:
2 SWS Seminar
Selbstständiges Arbeiten:
Vorstellung der Filme
Aufarbeitung des Themas
Vorbereitung einer Präsentation
90h (28h Präsenzzeit + 62h selbstständige Arbeit)

Kreditpunkte: 4 - 6 CP, nach Absprache

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen: Umfangreiche Kenntnisse von Grundlagen und Anwendungen von Informationssystemen

Angestrebte Lernergebnisse:

Lernziele & erworbene Kompetenzen:
Selbstständige Erarbeitung eines anspruchsvollen Themas
Mündliche Präsentation eines anspruchsvollen Themas
Verständnis von Fragen der Ethik des Einsatzes von Informationstechnologien

Inhalt:

Diskussion von Fragen der Ethik informationstechnischer Anwendungen, wie z.B. Einschränkung von Persönlichkeitsrechten Gesellschaftliche Effekte

Seite 232 **Inhaltsverzeichnis**
<table>
<thead>
<tr>
<th>Studien-/ Prüfsleistungen:</th>
<th>Ethische Fragen spezifischer Anwendungen (z.B. Militär, Gentechnik, etc.) Sicherheit und Vertrauenswürdigkeit von Systemen am Beispiel vorgegebener uns selbst gewählter Spielfilme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Kumulative Prüfung: Präsentation und Diskussion</td>
</tr>
<tr>
<td></td>
<td>Powerpoint, Tafel, Video, Filmvorführung</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Eigenständige Recherche und bereitgestellte Literatur</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Finite-Element-Methode</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Finite-Element-Methode</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>FEM</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>FEM</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. U. Gabbert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. U. Gabbert</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker keine Wechselwirkungen mit anderen Modulen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentlich 4 h (Vorlesung, Übung, Praktikum); selbständig. Bearbeiten eines Projektes</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>TM, Numerische Mechanik und FEM</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in die Lehrveranstaltung (einschließlich Überblick über kommerzielle Softwaretools) Problemangepasste Modellbildung mit Volumen- und Schalenelementen (Schalen- vs. 3D Kontinumsmodelle)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Kopplung von Schalenelementen mit 3D-Volumenelementen (Zwangsbedingungen, schwache Form der Koppelung,) Struktur dynamische Berechnungen (Eigenwerte, Modellreduktion nach Gyan und Craig-Bampton, modale Verfahren, Zeitintegration, Frequenzbereichsverfahren, Model-Updating). Überblick über die FEM zur Lösung allgemeiner (gekoppelter) Feldprobleme (Wärmeleitung, Wärmespannungen). Zusammenfassung und Ausblick (Nichtlineare FEM, Optimierung) Selbständige Bearbeitung eines individuellen Projektes (Gruppenprojekt)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Flow Visualization</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Flow Visualization</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>FlowVis</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>FlowVis</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Visual Computing</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Holger Theisel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten</td>
</tr>
<tr>
<td></td>
<td>Vorlesung: 2h wöchentlich</td>
</tr>
<tr>
<td></td>
<td>Übung: 2h wöchentlich</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten</td>
</tr>
<tr>
<td></td>
<td>Hausaufgaben</td>
</tr>
<tr>
<td></td>
<td>Programmieren von Beispielmodellen</td>
</tr>
<tr>
<td></td>
<td>Selbststudium</td>
</tr>
<tr>
<td></td>
<td>180h (56h Präsenzzeit + 124h Selbststudium)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Computergraphik I</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmer erwerben Kenntnisse der wichtigsten Verfahren der Strömungsvisualisierung</td>
</tr>
<tr>
<td></td>
<td>Einige Verfahren werden in den Übungen selbständig implementiert und evaluiert</td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmer sind imstande, einfache Strömungsdaten selbständig unter Zuhilfenahme vorhandener oder selbstentworfer Tools visuell zu analysieren.</td>
</tr>
</tbody>
</table>
Inhalt:
- Mathematische Grundlagen von Vektor- und Tensorfeldern
- Gewinnung von Strömungsdaten
- Direkte Methoden zur Strömungsvisualisierung
- Texturbasierte Methoden zur Strömungsvisualisierung
- Geometriebasierte Methoden zur Strömungsvisualisierung
- Feature-basierte Methoden zur Strömungsvisualisierung
- Topologische Methoden zur Strömungsvisualisierung
- Visualisierung von Tensorfeldern

Studien-/Prüfungsleistungen:
- Prüfungsvorleistung: s. Vorlesung
- Prüfung: mündlich

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Fortgeschrittene Methoden der Medizinischen Bildanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Advanced Methods in Medical Image Analysis</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>FMBA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverstehen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverstehen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesungen: 2 SWS 14-tägige Projekttreffen: 2 SWS Selbstständiges Arbeiten: Projektvorbereitung und -durchführung in kleinen Arbeitsgruppen Vorbereitung einer Projektpräsentation Vor- und Nachbereitung des Vorlesungsstoffs 180h (56h Präsenzzeit + 124h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundkenntnisse der Linearen Algebra, Grundlagen der Bildverarbeitung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse der Linearen Algebra, Grundlagen der Bildverarbeitung</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen: Kompetenz zur algorithmischen Lösung fortgeschrittener Themen der Bildanalyse im radiologisch-medizinischem Umfeld Fähigkeit zu Projektdurchführung in der Verarbeitung digitaler, radiologischer oder nuklearmedizinischer Bilder</td>
</tr>
</tbody>
</table>

Seite 238 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Fähigkeit zur Präsentation und Verteidigung eigener Arbeitsergebnisse</th>
</tr>
</thead>
</table>

Inhalt:
- Fortgeschrittene Segmentierungsverfahren:
 - Level Set Segmentierung
 - Graph Cut Segmentierung
 - Modelle von Form und Textur

Studien-/ Prüfungsleistungen:
- Prüfungsvorleistung ist erforderlich.
- Prüfung: mündlich

Medienformen:

Literatur:
http://wwwisg.cs.uni-magdeburg.de/bv/
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Funktionale Programmierung - fortgeschrittene Konzepte und Anwendungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Functional Programming - advanced concepts and applications</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>FP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Till Mossakowski</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Till Mossakowski</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Data Processing for Data Science
FIN: M.Sc. DKE (alt) - Bereich Models
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Bachelor: 150 h = 4 SWS = 56 h Präsenzzeit + 94 h selbstständige Arbeit
Master: 180 h = 4 SWS = 56 h Präsenzzeit + 94 h selbstständige Arbeit + 30 h zusätzliche Aufgabe |
| Kreditpunkte: | Bachelor: 5 CP
Master: 6 CP (Berechnung wie oben) mit Zusatzaufgabe, die im Rahmen der Übung zum Semesterbeginn angekündigt wird |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Programmierparadigmen (PGP) |
| Angestrebte Lernergebnisse: | In-depth understanding of concepts of functional programming
In-depth knowledge of Haskell insights into the role of functional concepts in other programming languages (e.g. Python, Java, Javascript)
Insights into the role of functional concepts in applications |
| Inhalt: | |
| Functional programming in-the-small: lazy evaluation, algebraic data types, type variables and polymorphism, recursion, higher-order functions, cyclic data structures, profiling
| Functional programming in-the-large: Modules, Abstract data types, type classes, specifications of properties
| Real-world functional programming: actions, states, input/output, monads, automatic testing of functional programs with HUnit and Quickcheck, deep pointers with lenses
| Application examples: parser, web development |

| Studien-/ Prüfungsleistungen: |
| Regelmäßige aktive Teilnahme an Vorlesungen und Übungen
| Bearbeitung der Übungsaufgaben und erfolgreiche Präsentation von Lösungen
| mündliche Prüfung |

| Medienformen:
| Literatur: |
| https://www.haskell.org/documentation/
| Simon Thompson: Haskell. The craft of functional programming
<p>| Bryan O'Sullivan, Don Stewart, John Goerzen: Real World Haskell Programmierung |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Fuzzy-Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Fuzzy Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>FS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FIN: Lehrstuhl Computational Intelligence</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Rudolf Kruse</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Fundamentals of Data Science
FIN: M.Sc. DKE (alt) - Bereich Fundamentals
FIN: M.Sc. DKE (alt) - Bereich Models
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeit = 56 Stunden:
2 SWS Vorlesung
2 SWS Übung
Selbstständige Arbeit = 124 Stunden:
Vor- und Nachbearbeitung von Vorlesung und Übung
Bearbeiten von Übungs- und Programmieraufgaben |
| Kreditpunkte: | 5 (B.Sc.) bzw. 6 (M.Sc.) |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Kenntnisse einer höheren Programmiersprache
Algorithmen und Datenstrukturen
Maschinelles Lernen, Data Mining
Algebra, Optimierung |
| Angestrebte Lernergebnisse: | Anwendung von adäquaten Modellierungstechniken zum Entwurf von Fuzzy-Systemen |
| Inhalt: Anwendung der Methoden der Fuzzy-Datenanalyse, und des Fuzzy-Regellernens
| Befähigung zur Entwicklung von Fuzzy-Systemen |
|---|---|
| Inhalt: Einführung in die Fuzzy-Mengenlehre, in die Fuzzy-Logik und Fuzzy-ArithmetikAnwendungen der Regelungstechnik, dem approximativen Schließen und der Datenanalyse |
| Studien-/ Prüfungsleistungen: | schriftliche Prüfung (Klausur) im Umfang von 120 Minuten, benötigte Vorleistungen:
- Bearbeitung von mindestens zwei Drittel aller Übungsaufgaben im Semester
- Erfolgreiche Präsentation von zwei Übungsaufgaben
Schein:
- Bearbeitung von mindestens zwei Drittel aller Übungsaufgaben im Semester
- Erfolgreiche Präsentation von zwei Übungsaufgaben
- Rechtzeitige Einsendung von zwei Programmieraufgaben
- Erfolgreiche Teilnahme am mündlichen Kolloquium
Unabhängig von der Art der Studien-/Prüfungsleistung wird eine regelmäßige und aktive Teilnahme an Vorlesung und Übung vorausgesetzt. |
| Medienformen: | |
| Literatur: | Computational Intelligence
A Methodological Introduction
Kruse, R., Borgelt, C., Braune, C., Mostaghim, S., Steinbrecher, M. |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Game Design – Grundlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Game Design – Foundations</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GDG</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Enrico Gebert, Prof. Dr. Holger Theisel</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Enrico Gebert, Prof. Dr. Holger Theisel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. CV - Anwendungsfach - Computerspiele
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - Computer Games
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | 150 Std.: 2 Std. Vorl. + 2 Std. Prakt. = 56 Std. + 94 Std. Selbststudium und praktische Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Einführung in Digitale Spiele |
| Inhalt: | Game Design: Definitionen; Aufgaben eines Game Designers
Die Struktur von Spielen: Komponenten eines Spiels
Die Struktur von Spielen: Thema, Vision, PoV und Genre
Game Design: Weltdesign
Game Design: Charakterdesign |

Seite 244 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Game Design: Setting, Hintergrundgeschichte und Handlung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Game Design: Rätsel, Aufgaben und Hindernisse</td>
</tr>
<tr>
<td>Game Design: Balancing und Testing</td>
</tr>
<tr>
<td>Das Spiel und der Game Designer</td>
</tr>
<tr>
<td>Das Spiel und der Spieler</td>
</tr>
<tr>
<td>Dokumentationstechniken</td>
</tr>
<tr>
<td>Kommunikation; der Designer und das Team</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorleistungen: Bearbeitung von Übungsaufgaben und deren</td>
</tr>
<tr>
<td>Präsentation</td>
</tr>
<tr>
<td>Prüfung: Klausur 120 Min.</td>
</tr>
<tr>
<td>Schein: s. Vorlesung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>David Perry, Rusel DeMaria: David Perry on Game Design:</td>
</tr>
<tr>
<td>A Brainstorming Toolbox. Cengage Learning, 2009</td>
</tr>
<tr>
<td>CRC Press, 2008</td>
</tr>
<tr>
<td>Tracy Fullerton: Game Design Workshop: A Playcentric</td>
</tr>
<tr>
<td>Approach to Creating Innovative Games. CRC Press, 2008</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Game Development Project
engl. Modulbezeichnung: Game Development Project
ggf. Modulniveau:
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 6. Semester
Semesterlage:
Modulverantwortliche(r): Prof. Dr.-Ing. habil Stefan Schlechtweg
Dozent(in): Prof. Dr.-Ing. habil Stefan Schlechtweg
Sprache: deutsch
Zuordnung zum Curriculum:
FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK
Lehrform / SWS: Vorlesung
Arbeitsaufwand: 5 CP = 150h (10h Präsenszeit + 140h selbstständige Arbeit)
Kreditpunkte: 5 CP
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Einführung in Digitale Spiele
Module aus der Profillinie „Computer Games“
Angestrebte Lernergebnisse: Lernziele & erworbene Kompetenzen:
Fortgeschrittene methodische Kompetenzen auf dem Gebiet der Informatik und ihre Anwendungen und/oder fortgeschrittene persönliche oder soziale Kompetenzen auf der Basis einer Fachveranstaltung.

Die Studierenden können mit Unterstützung eines Mentors ein Computerspiel von der Idee bis zur Realisierung umsetzen. Dabei nutzen sie angemessene Werkzeuge und Methoden sowohl für die Entwicklung als auch für Projektmanagement und Dokumentation.

Studien-/Prüfungsleistungen: Wissenschaftliches Projekt
Medienformen:

Seite 246 Inhaltsverzeichnis
of Lenses. Burlington: Morgan Kaufmann
Projektbezogene Literatur abhängig von den verwendeten Werkzeugen
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Game Engine Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Game Engine Architecture</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GEA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Stefan Schlechtweg-Dorendorf</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Stefan Schlechtweg-Dorendorf; N.N. (Acagamics)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. CV - Anwendungsfach - Computerspiele
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - Computer Games
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | 2 SWS Vorlesung / 2 SWS Übung
Selbstständiges Arbeiten:
Nacharbeiten der Vorlesung
Lösen der Übungsaufgaben
Kleine Programmierprojekte
150 h (42h Präsenzzeit + 108h selbstständige Arbeit) |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | Grundlagen der Computergraphik
Mathematik I bis IV |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Kennenlernen des Aufbaus und der Grundelemente von Game Engines
Einsicht in die Arbeitsweise der verschiedenen Komponenten einer Game Engine und ihr Zusammenspiel
Anwenden der Kenntnisse aus verschiedenen Informatik-Bereichen, um Game Engine Komponenten adäquat zu entwickeln
Selbständige Implementierung von Game Engine Komponenten innerhalb eines vorgegebenen Rahmensystems |
Inhalt:

<table>
<thead>
<tr>
<th>Game Engine Architektur</th>
<th>Die Game Loop und zeitbasierte Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein- und Ausgabegeräte</td>
<td></td>
</tr>
<tr>
<td>Ressourcen- und Assets-Management</td>
<td></td>
</tr>
<tr>
<td>Die Rendering-Engine und Animation</td>
<td></td>
</tr>
<tr>
<td>Game AI</td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Collision Detection</td>
<td></td>
</tr>
<tr>
<td>Verteilte Spiele und Engines</td>
<td></td>
</tr>
</tbody>
</table>

Studien-/Prüfungsleistungen:

- Prüfungsvorleistung: Projektarbeit in den Übungen
- Prüfung: Klausur 120 Min.

Medienformen:

| Powerpoint, Video, Tafel |

Literatur:

- Steve Rabin: “Introduction to Game Development”, Charles River Media, 2010
Modulbezeichnung:
Geometrische Datenstrukturen

engl. Modulbezeichnung:
Geometric Data Structures

ggf. Modulantitel:

ggf. Lehrveranstaltungen:

Studiensemester:
M.Sc. ab 1. Semester

Semesterlage:
Wintersemester

Modulverantwortliche(r):
Professur f. Theoretische Informatik / Algorithmische Geometrie

Dozent(in):
Prof. Dr. Stefan Schirra

Sprache:
deutsch

Zuordnung zum Curriculum:

FIN: M.Sc. CV	Bereich Computervisualistik
FIN: M.Sc. DIGIENG	Methoden der Informatik
FIN: M.Sc. DKE	Data Processing for Data Science
FIN: M.Sc. DKE (alt)	Bereich Methods II
FIN: M.Sc. INF	Bereich Informatik
FIN: M.Sc. INGINF	Bereich Informatik
FIN: M.Sc. VC	Visual Computing - Wahlpflichtfächer
FIN: M.Sc. WIF	Bereich Informatik

Lehrform / SWS:
Vorlesung; Übung

Arbeitsaufwand:
Präsenzzeiten:
wöchentliche Vorlesung 3 SWS
wöchentliche Übung 1 SWS

Selbständiges Arbeiten:
Bearbeiten der Übungen und zugeordneter Probleme
Nachbereitung der Vorlesung
Literaturvertiefung

180h = 4SWS = 56h Präsenzzeit + 124h selbständige Arbeit

Kreditpunkte:
6

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:
Grundkenntnisse in Algorithmik

Angestrebte Lernergebnisse:
Fähigkeit, effiziente Datenstrukturen für geometrische Probleme zu entwerfen und hinsichtlich ihrer Effizienz beurteilen und vergleichen zu können

Inhalt:
Balancierte Suchbäume, sich selbstorganisierende Suchbäume, amortisierte Analyse, randomisierte Datenstrukturen, Intervallbäume, Datenstrukturen für Bereichsanfragen, erweiterte Datenstrukturen, Quad-Trees, Fractional Cascading, Prioritätswarteschlangen, Segmentbäume, Datenstrukturen zur
Punktlokalisierung in der Ebene, persistente Datenstrukturen, Dynamisierung von Datenstrukturen

Studien-/ Prüfungsleistungen:

- Prüfungsvorleistung: s. Vorlesung
- Prüfung: mündlich

Medienformen:

Literatur:

- Samet: *Foundations of Multidimensional and Metric Data Structures*
- Zachmann, Langetepe: *Geometric Data Structures for Computer Graphics*
- Mehta, Sahmi: *Handbook of Data Structures and Applications*
- Morin: *Open Data Structures: An Introduction*
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>GPU Programmierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>GPU Programming</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Jun.-Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Computer Games</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung / 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Nacharbeiten der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Lösen der Übungsaufgaben</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP - 150 h (56h Präsenzzeit + 94h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Computergraphik Programmierkenntnisse C++</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Angestrebte Kenntnisse:</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der parallelen Programmierung</td>
</tr>
<tr>
<td></td>
<td>• Task-parallele Programmierung in C++ with std::threads</td>
</tr>
<tr>
<td></td>
<td>• Programmierung von daten-parallelen Co-Prozessoren zur beschleunigten Berechnung nicht-graphik-spezifischer Algorithmen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Aufbau der modernen Graphik-Pipeline</td>
</tr>
<tr>
<td></td>
<td>Aufbau von GPUs</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der parallelen Programmierung</td>
</tr>
<tr>
<td></td>
<td>GPU Programmiertechniken für allgemeine Algorithmen: Speicherarten, Synchronisation, Patterns</td>
</tr>
<tr>
<td></td>
<td>Abbildung eines Algorithmus auf eine daten-parallele Architektur</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Schriftliche Prüfung</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Folien, Video, Tafel, Beispielprogramme</td>
</tr>
</tbody>
</table>
| Literatur: | D. Kirk, W. Hwu, Programming Massively Parallel Processors, Morgan Kaufmann
Elsevier/Morgan Kaufmann, 2012 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Arbeitswissenschaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Fundamentals of Ergonomics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dipl.-Ing. Brennecke; FMB-IAF</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dipl.-Ing. Brennecke; FMB-IAF</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Begleitendes Selbststudium, Prüfungsvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Fristgerechte Einschreibung für das Modul Prüfungsvorleistung: Übungsschein Prüfung: Klausur K90</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Gegenstand, Definition, Ziele und Bestandteile der ArbeitswissenschaftPhysiologische und psychologische Grundlagen der Arbeit Disziplinen der Arbeitsgestaltung: Arbeitsplatzgestaltung (Dimensionierung von Handlungsstellen, Gestaltung von Bildschirmarbeit), Arbeitsumweltgestaltung (Lärm, Beleuchtung), Arbeitsorganisation (Arbeitsaufgaben- und</td>
</tr>
<tr>
<td>Arbeitsinhaltgestaltung, innovative, partizipative Arbeits- und Beschäftigungskonzepte</td>
<td>Arbeitswirtschaft (Zeitwirtschaft)</td>
</tr>
</tbody>
</table>

Studien-/ Prüfungsleistungen:
- Prüfungsvorleistung: Übungsschein
- Prüfung: Klausur K90

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Bildverarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Image Processing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GrBV</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverstehen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverste-hen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Selbstständige Arbeit:</td>
<td>Übungsvorbereitung in kleinen Gruppen</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung des Vorlesungsstoffs</td>
</tr>
<tr>
<td></td>
<td>150h = 4SWS = 56h Präsenzzeit + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Einführung in die Informatik, lineare Algebra</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur Entwicklung von Methoden zur Lösung eines Bildverarbeitungsproblems</td>
</tr>
<tr>
<td></td>
<td>Grundlegende Fähigkeiten zur analytischen Problemlösung</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur Anwendung einer Rapid-Prototyping-Sprache in Bild- und Signalverarbeitung.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Digitale Bildverarbeitung als algorithmisches ProblemVerarbeitung mehrdimensionaler, digitaler Signale Methods der Bildverbesserung Grundlegende Segmentierungsverfahren</td>
</tr>
</tbody>
</table>

Seite 256 Inhaltsverzeichnis
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung ist erforderlich
Prüfung: Klausur 120 Min. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe http://wwwisg.cs.uni-magdeburg.de/bv/gbv/bv.html</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Biologie</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Grundlagen der Biologie</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FNW, Frau Prof. K. Braun, Prof. Stork</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>FNW, Frau Prof. K. Braun, Prof. Stork</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Biologie</td>
</tr>
<tr>
<td>Vorlesung: Wintersemester / Praktikum: Sommersemester</td>
<td></td>
</tr>
<tr>
<td>Vorlesung ist Pflicht, Praktikum Wahlpflicht</td>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeiten:</td>
<td></td>
</tr>
<tr>
<td>2 SWS Vorlesung</td>
<td></td>
</tr>
<tr>
<td>2 SWS Praktikum</td>
<td></td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td></td>
</tr>
<tr>
<td>Nacharbeiten der Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Vor- und Nachbereiten des Praktikums</td>
<td></td>
</tr>
<tr>
<td>Vorlesung: 3 CP = 90 h (28h Präsenzzeit + 62h selbstständige Arbeit)</td>
<td></td>
</tr>
<tr>
<td>Praktikum: 3 CP = 90 h (28h Präsenzzeit + 62h selbstständige Arbeit)</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Vorlesung: 3</td>
</tr>
<tr>
<td>Praktikum: 3</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik I</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Vorlesung:</td>
</tr>
<tr>
<td>Event</td>
<td>Details</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Allgemeine Zoologie, Tierphysiologie, Neurobiologie</td>
<td></td>
</tr>
<tr>
<td>Zellbiologie, Biochemie der Zelle, Genetik</td>
<td></td>
</tr>
<tr>
<td>Verhaltensbiologie</td>
<td></td>
</tr>
<tr>
<td>Entwicklungsbioologie</td>
<td></td>
</tr>
<tr>
<td>Praktikum:</td>
<td></td>
</tr>
<tr>
<td>Histologie/Zytologie</td>
<td></td>
</tr>
<tr>
<td>Einführung in die histologischen Präparationstechniken und Färberverfahren</td>
<td></td>
</tr>
<tr>
<td>Klassifikation gefärbter Gewebe</td>
<td></td>
</tr>
<tr>
<td>In vitro Methoden</td>
<td></td>
</tr>
<tr>
<td>Immuncytochemie/Enzymhistochemie</td>
<td></td>
</tr>
<tr>
<td>Quantifizierungsmethoden in der Histologie</td>
<td></td>
</tr>
<tr>
<td>Einführung in die Konfokale Laserscanmikroskopie</td>
<td></td>
</tr>
<tr>
<td>Einführung in die Elektronenmikroskopie</td>
<td></td>
</tr>
<tr>
<td>Einführung in biochemische (\text{Studien-/ Prüfungsleistungen:})</td>
<td></td>
</tr>
<tr>
<td>Vorlesung: Klausur 2Std.</td>
<td></td>
</tr>
<tr>
<td>Praktikumsschein</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. CV - Anwendungsfach - Computerspiele
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - Computer Games
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: |
Präsenzzeit:
2 SWS Vorlesung
2 SWS Übung
Selbständiges Arbeiten:
Bearbeiten von Übungs- und Programmieraufgaben
150 h = 56 h Präsenzzeit + 94 h selbständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Grundkenntnisse in Programmierungidealerweise Java-Kenntnisse (z.B. aus der Vorlesung "Einführung in die Informatik") |
| Angestrebte Lernergebnisse: | Grundkenntnisse der Programmiersprache C++Sicherer Umgang mit den wichtigsten Sprachmerkmalen (z.B. Zeiger, Klassen)
Neuerungen des C++11-Standards (teilweise)
Enterblick in weiterführende Themen (z.B. template meta-programming)
Grundkenntnisse der Standardbibliotheken
Praktische Umsetzung von Problemstellungen in C++
Plattformunabhängige Programmierung (z.B. Unix-Derivate/MS Windows) |
| Inhalt: | Bedienung des Compilers und Zusammenspiel mit Linker
Primitive Datentypen, Operatoren und Kontrollfluss (und Unterschiede zu Java)
Variablen, Felder, Zeiger und Zeigerarithmetik
Funktionen
Klassen
Speicherverwaltung, Referenzen, Ausnahmebehandlung
Überladen von Operatoren
Generische Programmierung mit templates
Überblick über die Standardbibliothek inklusive STL
Werkzeuge (debugger, make, valgrind, doxygen)
Allgemeine Problematiken (z.B. Programmierstil, Quellcode-Verwaltung, Optimierung, Zeichensätze/UTF-8) |
|----------|--|
| Studien-/ Prüfungsleistungen: | regelmäßige Teilnahme an Vorlesung und Übungserfolgreiche Bearbeitung der Übungsaufgaben
Prüfung: Klausur 120 Min. |
| Medienformen: | |
| Literatur: | Bjarne Stroustrup. The C++ Programming Language
Scott Meyers. Effective C++
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Computer Vision</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Computer Vision</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GrCV</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverste-hen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverste-hen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Computervisualistik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Projekt |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung
2 SWS Projekttreffen
Selbstständige Arbeit:
Projektplanung und Umsetzung in Teams
Vorbereitung der Projektpräsentation
Vor- und Nachbearbeitung des Vorlesungsstoffs
150h = 4SWS = 56h Präsenzezeit + 94h selbstständige Arbeit, |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Einführung in die Informatik, lineare Algebra, Grundkenntnisse der digitalen Bildverarbeitung |
| Angestrebte Lernergebnisse: | Lernziele & zu erwerbende Kompetenzen:
Fähigkeit zur Anwendung von Algorithmen der Computer Vision
Fähigkeit zur eigenständigen Bearbeitung eines kleinen Projekts
Teamfähigkeit |
High Level Vision: Template Matching, variable Templates, Recognition by Components, Bewegungsverfolgung |
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung ist erforderlich
Prüfung: mündlich |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe http://wwwisg.cs.uni-magdeburg.de/bv/gcv/cv.html</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Fahrzeugtechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Basics for Automotive Technology</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Rottengruber, FMB-IMS</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Rottengruber, FMB-IMS Dr.-Ing. Tommy Luft, FMB-IMS</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Konstruktion & Design</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Fertigungslehre</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Jüttner, FMB-IWF</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Jüttner, FMB-IWF Weitere Lehrende: apl. Prof. Bähr, Prof. Hackert-Oschätzchen, Dr. Wengler, FMB-IFQ</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Konstruktion & Design</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Informationstechnik für CV, BIT</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Basics of Information Technology for CV, BIT</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Hochfrequenz- und Kommunikationstechnik, Professur für Technische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Hochfrequenz- und Kommunikationstechnik, Professur für Technische Informatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Bildinformationstechnik FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 3 SWS Vorlesungen 1 SWS PraktikumSelbstständiges Arbeiten: Vorlesungsnachbereitung Praktikumsvorbereitung150h (56h Präsenzzeit +94 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Universitäres Grundwissen in Mathematik Die Lehrveranstaltung setzt die Vorlesung Grundlagen der Bildverarbeitung (Fakultät für Informatik) voraus.</td>
</tr>
</tbody>
</table>
Informationsübertragungssystemen mit widersprüchlichen Anforderungen
Signalorientierte Bildverarbeitung
Vermittlung vertiefter Kenntnisse der Bildverarbeitung
Gewinnung experimenteller Erfahrungen und Kennenlernen kommerzieller Bildverarbeitungssysteme

| Inhalt: | Einführung in die Kommunikationstechnik
Mathematische Darstellung der Signale als Informationsträger im Zeit- und Frequenzbereich (Fourier-Reihe und Fourier-Transformation)
Die Abtasttheorie und die Digitalisierung der Signale
Quellencodierung und Datenkompression
Mathematische Beschreibung des Rauschens
Rauschverhalten der Übertragungskanäle; Berechnung der Bitfehlerrate
Behandlung ausgewählter digitaler Übertragungssysteme im Basisband (PCM, DPCM,...)
Behandlung ausgewählter digitaler Übertragungssysteme im Passband (ASK, PSK, FSK, QAM,...)
Signalorientierte Bildverarbeitung
Methoden der Bildaufnahme
Farbbildanalyse
Mustererkennung
3D- Vermessung |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Praktikumsschein (erfolgreiche Absolvierung des Praktikums)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Overhead, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe Script</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Maschinenelemente</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>apl. Prof. Bartel, FMB</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>apl. Prof. Bartel, FMB-IMK Weitere Lehrende: Dr. Bobach, FMB-IMK</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Konstruktion & Design</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der nutzerorientierten Frontend-Entwicklung</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Basics of user-oriented front-end development</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GNFE</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Christian Hansen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Mareike Gabele</td>
</tr>
<tr>
<td>Sprache:</td>
<td>---</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Anwendungsfach - Computerspiele</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Computer Games</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>5 Credit Points = 150 h (20 Std Vortrag + 130 Std Projekt</td>
</tr>
<tr>
<td></td>
<td>Blockseminar</td>
</tr>
<tr>
<td></td>
<td>Projektarbeit</td>
</tr>
<tr>
<td></td>
<td>Vertiefung des VortragsmaterialsErarbeiten einer Lösung der Projektaufgabe</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>
Durch die Kenntnisse über Richtlinien und die dadurch mögliche Reflexion kann in deren Anwendung die Entscheidung getroffen werden, ihnen zu folgen - oder bewusst mit ihnen zu brechen. Durch das Anwenden der erlernten Prinzipien können neue Frontends fundiert kreiert oder bestehende Frontends evaluiert werden. Dadurch wird die Qualität der Ergebnisse der Softwareentwicklung gesteigert.

Inhalt:

- User Experience Prinzipien basierend auf Erfahrungs- und Erwartungshaltung und kognitiver Verarbeitung in Verbindung mit technisch zu schaffenden Voraussetzungen der SoftwareFokus auf Konzeptentscheidung im FrontendErstellen und Präsentieren einer praktischen Anwendung der erlernten Prinzipien anhand einer Beispielaufgabe

Studien-/ Prüfungsleistungen:

- Präsentation

Medienformen:

- Präsentationsfolien, Video der erzeugten Lösung, Umsetzungsdarstellung und - erläuterung

Literatur:

- Mögliche Vertiefung
 Don Norman
 Jakob Nielsen
 Jon Yablonski
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Theoretischen Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to the Theory of Computation</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GTI</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Till Mossakowski/Prof. Dr. Stefan Schirra</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Pflichtfächer
FIN: B.Sc. INF - Pflichtfächer
FIN: B.Sc. INGINF - Pflichtfächer
FIN: B.Sc. WIF - WPF Verstehen & Gestalten |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
3 SWS Vorlesung
2 SWS Übung
Selbstständiges Arbeiten:
Bearbeiten der Übungsaufgaben
Nachbereitung der Vorlesungen
150h = 5 SWS = 70h Präsenzzeit + 80h selbstständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Anwendung der Grundlagen von Automatentheorie und formalen Sprachen zur Problemlösung
Fähigkeit, Probleme hinsichtlich Berechenbarkeit und Komplexität beurteilen und klassifizieren zu können |
<p>| Inhalt: | Einführung in Formale Sprachen (reguläre Sprachen und Grammatiken), elementare Automatentheorie (endliche Automaten, Kellerautomaten), Berechnungsmodelle und Churchsche These, Entscheidbarkeit und Semi-Entscheidbarkeit, Komplexitätsklassen P und NP, NP-Vollständigkeit |
| Studien-/Prüfungsleistungen: | Prüfungsvorleistungen: s. Vorlesung |</p>
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Hopcroft, Motwani, Ullmann; Einführung in der Automatentheorie, Formale Sprachen und KomplexitätstheorieLewis, Papadimitriou; Elements of the Theory of Computation Sipser; Theory of Computation.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Theoretischen Informatik II</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to the Theory of Computation II</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GTI</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Theoretische Informatik / Formale Sprachen / Automatentheorie, Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Till Mossakowski/Prof. Dr. Stefan Schirra/</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Bearbeiten der Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Nachbereitung der Vorlesungen</td>
</tr>
<tr>
<td></td>
<td>150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit.</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundlagen der Theoretischen Informatik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Anwendung der vertiefenden Automatentheorie und der formalen Sprachen zur Problemlösung</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit, komplexe Probleme hinsichtlich Berechenbarkeit und Komplexität beurteilen und klassifizieren zu können</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Weiterführendes zu Formalen Sprachen (Kleene Algebra, Homomorphismen, Normalformen von Grammatiken) und Automaten (Varianten, Zustandsminimierung), Äquivalenz verschiedener Berechnungsmodelle (beispielsweise Turingmaschinen, Registermaschinen, primitiv rekursive und</td>
</tr>
</tbody>
</table>

Seite 273 Inhaltsverzeichnis
mu-rekursive Funktionen, Grammatiken), weitere unentscheidbare und NP-vollständige Probleme.

| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung: s. Vorlesung
| | Prüfung: Klausur 120 Min |

| Medienformen: Literatur: | Sipser; Theory of Computation.Kozen; Automata and Computability
<p>| | Shallit: A Second Course in Formal Languages and Automata Theory |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Theoretischen Informatik III</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to the Theory of Computation III</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>GTI III</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Stefan Schirra</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum:</th>
<th>FIN: B.Sc. CV - WPF Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 3 SWS Vorlesung 1 SWS Übung</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Bearbeiten der Übungsaufgaben Nachbereitung der Vorlesungen</td>
</tr>
<tr>
<td>150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit.</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundlagen der Theoretischen Informatik I + II</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Deterministisch kontextfreie Sprachen, Kleene Algebren, exakte und Approximationsalgorithmen für schwere Probleme, Probabilistische Turingmaschinen, Schaltkreisfamilien, weitere Komplexitätstklassen.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| Literatur: | Sipser; Theory of Computation
 Kozen; Automata and Computability |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen des Industriedesigns</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Grundlagen des Industriedesigns</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>ID-Modul 1</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>HD Dipl.Designer, Dipl.-Ing. Thomas Gatzky</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>HD Dipl.Designer, Dipl.-Ing. Thomas Gatzky</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Allgemeine Visualistik - Design</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung (WS) 2 SWS Übung – Grundl. der visuellen Gestaltung (WS+SS) Selbstständiges Arbeiten: 2 Std./Woche für Belegarbeiten 150h=4 SWS=56h Präsenzzeit+94h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Interesse für gestalterische Aspekte des Produkt- und Umweltdesigns sowie eigene gestalterische Aktivitäten</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und erworbene Kompetenzen Wissen und Grundkenntnisse zum Industriedesign Einführung in die Denk- und Entwurfsweise im Industriedesign beim Entwickeln von Produkten Sensibilisierung für formalästhetische Qualitäten und Schulung gestalterischer Fähigkeiten zur Flächengestaltung</td>
</tr>
</tbody>
</table>
Studien-/ Prüfungsleistungen:

Das Modul beinhaltet zwei Leistungsanteile:
- Vorlesung: Vollständige Teilnahme an der LV (Anwesenheitskontrolle)
- Übung: Bewertung aller Übungsaufgaben

Aus beiden Leistungsanteilen wird eine Gesamtnote gebildet.

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen verteilter Sensordatenfusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Distributed Sensor Data Fusion</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>SDF</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Benjamin Noack</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Benjamin Noack</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: M.Sc. DIGIENG - Methoden des Digital Engineering
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Ingenieurinformatik
FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung
2 SWS Übung
Selbstständiges Arbeiten:
Eigenständige Vor- und Nachbereitung
180h = 4 SWS = 56h Präsenzzeit + 124h selbständiges Arbeiten |
<p>| Kreditpunkte: | 6 CP |
| Voraussetzungen nach Prüfungsordnung: | keine |
| Empfohlene Voraussetzungen: | keine |
| Angestrebte Lernergebnisse: | You have an overview of basic problems and methods in designing distributed sensor systems and their applications. You understand how to process data in a network of sensors, what requirements the infrastructure must meet, and how to model and describe errors like measurement noise. You are familiar with the mathematical tools and can apply them. You can analyze, compare, and evaluate different approaches to information processing of sensor data. |</p>
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>This lecture introduces basic principles, requirements, and methods of sensor data processing. Since data are more often gathered by networked sensor systems, this lecture places particular emphasis on distributed sensor data fusion methods. We will start by discussing the technical specifications of a sensor system and the basics of digital sensor data processing. Our study includes sampling theorems, compressive sensing, and signal matching. We will consider the required infrastructure to processing sensor data in networked systems, i.e., sensor networks. Based on this infrastructure, we can apply methods for multisensor data fusion to spatially distributed sensors and can monitor spatio-temporal processes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung: mündlich</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung: Grundlegende Algorithmen und Datenstrukturen
engl. Modulbezeichnung: Fundamental Algorithms and Data Structures
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 4. Semester
Semesterlage: Wintersemester
Modulverantwortliche(r): Professur für Theoretische Informatik / Algorithmische Geometrie
Dozent(in): Prof. Dr. Stefan Schirra
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Verstehen & Gestalten
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeiten:
 3 SWS Vorlesung
 1 SWS Übung
Selbstständige Arbeit:
 Bearbeiten der Übungen
 Nachbereitung der Vorlesungen
150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit
Kreditpunkte: 5
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: „Algorithmen und Datenstrukturen“
 (Einführungsveranstaltung)
Angestrebte Lernergebnisse: Lernziele & erworbene Kompetenzen:
 Grundlegende Fähigkeit zur Anwendung sequentieller und paralleler Algorithmen zur Problemlösung
 Fähigkeiten zu deren Bewertung, insbesondere hinsichtlich ihrer Effizienz.
Inhalt: Fortgeschrittene Entwurfs- und Analysetechniken, probabilistische Analyse und randomisierte Algorithmen, grundlegende Graphenalgorithmen, PRAM Algorithmen.
Studien-/ Prüfungsleistungen: Prüfungsvorleistungen: s. Vorlesung Prüfung: mündlich
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Cormen, Leiserson, Rivest, Stein; Introduction to Algorithms</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundzüge der Algorithmischen Geometrie</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Basic Introduction to Computational Geometry</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Stefan Schirra</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>3 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit:</td>
</tr>
<tr>
<td></td>
<td>Bearbeiten der Übungen</td>
</tr>
<tr>
<td></td>
<td>Nachbereitung der Vorlesungen</td>
</tr>
<tr>
<td></td>
<td>150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Algorithmen und Datenstrukturen (Einführungsveranstaltung)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur algorithmischen Lösung elementarer geometrischer Probleme und deren Bewertung, insbesondere hinsichtlich ihrer Effizienz</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zur Beschreibung und Anwendung fundamentaler geometrischer Strukturen zur Problemlösung</td>
</tr>
</tbody>
</table>

Seite 283 Inhaltsverzeichnis
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistungen: s. Vorlesung
Prüfung: Klausur 120 Min. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>
| Literatur: | de Berg, Cheong, van Kreveld, Overmars: Computational
Auflage). |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Hardwarenehe Rechnerarchitektur</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Hardware-related computer architecture</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>HWRA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Hardware-nahe Technische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing Gerald Krell</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeiten:</td>
<td>1 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Laborpraktikum</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Übungs- und Praktikumsvorbereitung, Konsultation</td>
</tr>
<tr>
<td></td>
<td>150 h = 4 SWS = 56 h Präsenzzeit + 94 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Besuch der vorgeschalteten Lehrveranstaltungen auf dem Gebiet der technischen Informatik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>• Verständnis für die Vorgänge im Rechner und der zugehörigen Peripherie auf Signalebene</td>
</tr>
<tr>
<td></td>
<td>• Entwicklung der Fähigkeit, Rechner durch geeignete Schnittstellen zu komplettieren bzw. als embedded-Hardware zu verwenden</td>
</tr>
<tr>
<td></td>
<td>• Kennenlernen von Elementen programmierbarer Logik</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit, hochintegrierte Bausteine für Verarbeitungsaufgaben in Geräten zu nutzen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>• Hardwareaspekte von Datenpfaden</td>
</tr>
<tr>
<td></td>
<td>• Direkter Speicherzugriff, Cache-Speicher</td>
</tr>
<tr>
<td></td>
<td>• Analoge Interfaces, Bildein-/ausgabe</td>
</tr>
<tr>
<td></td>
<td>• Signalprozessoren</td>
</tr>
<tr>
<td></td>
<td>• Anwendung von Einchipcontrollern, Systems on Chip (SOCs)</td>
</tr>
</tbody>
</table>
| Studien-/ Prüfungsleistungen: | • High-Level Synthese von programmierbarer Logik
• Embedded Vision |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Elearning, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe Script</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Hardwarenahe Rechnerarchitektur für CV, BIT</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Hardware-related computer architecture for CV, BIT</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>HWRA-CV,BIT</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Hardware-nahe Technische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Gerald Krell</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIn: B.Sc. CV - Anwendungsfach - Bildinformationstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Praktikum</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung,
1 SWS Übung,
1 SWS Praktikum
Selbstständiges Arbeiten:
Übungs- und Praktikumsvorbereitung, Konsultation
180h = 4 SWS = 56 h Präsenzzeit + 124 h selbstständige Arbeit |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | Praktikumsschein |
| Empfohlene Voraussetzungen: | Besuch der vorgeschalteten Lehrveranstaltungen auf dem Gebiet der technischen Informatik |
| Angestrebte Lernergebnisse: |
- Verständnis für die Vorgänge im Rechner und der zugehörigen Peripherie auf Signalebene
- Entwicklung der Fähigkeit, Rechner durch geeignete Schnittstellen zu komplettieren bzw. als embedded-Hardware zu verwenden
- Kennenlernen von Elementen programmierbarer Logik
- Entwicklung des Verständnisses für die Funktionen von Interfaces der Bild ein- und -ausgabe |
| Inhalt: |
- Aufbau und Funktion von Grundelementen
- Hardwareaspekte von Datenpfaden
- Rechneraufbau Grundlagen
- RISC, CISC, Maschinenbefehle
- Bussysteme
- Ports, Halbleiterspeicher
- Adressierung von Speicherzellen und Ports
- Direkter Speicherrzugsriff, Cache-Speicher |
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsteilnehmer:</th>
<th>Leistungen: Praktikumsschein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfung: schriftlich (2h)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Elearning, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe Script</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>HealthTEC Innovation Design</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>HealthTEC Innovation Design</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>HTID</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>---</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Michael Friebe</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Michael Friebe</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Medizintechnik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>· 2.5 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>· Selbstständiges Arbeiten: Nachbereiten des Vorlesungsstoffes, Individualaufgabe, Teamarbeit, Vorbereitung von Vorträgen und der Ausarbeitungen, Prüfungsvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 Credit Points für B.Sc. CV = 150h = 2.5 SWS = 35h Präsenzzeit + 115h selbst. Arbeit</td>
</tr>
<tr>
<td></td>
<td>6 Credit Points für M.Sc. CV = 180h = 2.5 SWS = 35h Präsenzzeit + 145h selbst. Arbeit (zusätzliche Individualaufgabe gegenüber dem B.Sc.)</td>
</tr>
<tr>
<td>Notenskala gemäß Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Interesse an interdisziplinärer Innovationsgenerierung im Gesundheitswesen ... eigene umsetzbare Ideen sind nicht notwen-dig. Vor Beginn der Vorlesung werden einige vorbereitende Arti-kel vom Dozenten zur Verfügung gestellt.</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen: · Stanford Biodesign Prinzip - Identify / Invent / Implement von sogenannten Unmet Clinical Need · Vermittlung von Innovationsmethoden zur Definition und zur Validierung (Blue Ocean Design, Innovation Segments, Value Proposition Canvas, Business Model Canvas, u.v.m.) · Insight: Wie funktioniert das Gesundheitswesen und welche Innovationsbedarfe gibt es? Wie erkenne ich die? · Insight: Wie wird die Zukunft im Bereich Gesundheit ausse-hen? · Interdisziplinarität als Grundlage für Innovation im Gesundheitswesen · Internationale Unterschiede im Innovationsbedarf · Entwicklung eines „minimal viable Prototyp“ ... auch unter...</td>
</tr>
<tr>
<td>Zuhilfenahme der HealthTEC INNOLAB Labore und nachfolgende Validierung mit den Akteuren</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt:
- Einführung in internationale Gesundheitsökonomie
- Neue Geschäftsmodelle als Basis für neue Entwicklungen oder umgekehrt
- Exponentielle Technologie und deren Einfluss auf globale Entwicklungen im Gesundheitswesen (KI, Roboter, Genetic, 3D-Druck, ...)
- Vermittlung der Innovationstechnologien · Vermittlung des Innovationsprozesses im Gesundheitswesen
- Ethische Grundlagen im Zusammenhang mit den neuen Technologien (Datenverwendung, Privatsphäre, ...)
- Information und Einführung in die Team - Abschlussarbeit

Studien- / Prüfungsleistungen:
- Prüfungsvorleistung: s. Vorlesung
- Prüfung: schriftlich im letzten Vorlesungsblock (45 Minuten) plus Präsentation einer Teamarbeit (3 Studenten pro Team, Vortrag und Ausarbeitung) zu einem Innovationsthema im Gesundheitswesen (Schablone wird zur Verfügung gestellt). Für den Master CV wird eine zusätzliche Individualarbeit zum Thema Ethik unter Verwendung des Ethik-Canvas und des gewählten Innovationsprojekts angefertigt.

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Heterogeneous Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Heterogeneous Computing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Thilo Pionteck (FEIT-IIKT)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Thilo Pionteck (FEIT-IIKT)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, zweiwöchentliche Übungen 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Nacharbeiten Vorlesung, Lösung Übungsaufgaben und Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>3 SWS / 6 Credit Points = 180 h (42 h Präsenzzeit + 138 h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Bachelor in Elektrotechnik, Mechatronik oder Informatik</td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse: | Lernziele und erworbbene Kompetenzen: Nach dem erfolgreichen Abschluss des Moduls können die Studierenden die Rechenprinzipien unterschiedlicher Hardware-plattformen diskutieren und ein geeignetes Rechenprinzip für eine gegebene Anwendung auswählen. Sie können Anwendungen erstellen, welche auf unterschiedlichen Hardwareplattformen realisiert werden können und deren Hardwareeigenschaften optimal ausnutzen. Die Studierenden können die Auswirkungen unterschiedlicher Beschreibungsstile bei der High-Level-Synthese abschätzen und vorgegebenen Code so umstrukturieren, dass eine effiziente Realisierung auf unterschiedlichen Hardwareplattformen erfolgen kann. Ferner können sie selbstständig bestimmen, wie eine Anwendung bei hybriden Systemarchitekturen auf die unterschiedlichen Verarbeitungseinheiten aufgeteilt werden kann. Durch praktische Übungen sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu
vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen.

| Inhalt: | Hardwarearchitektur von GPUs und FPGAs
Dynamische Rekonfiguration von FPGAs
Manycore-Architekturen
Datenflussrechner
Aufbau hybrider Rechnersysteme
Programmiermodelle für Manycore-Systeme
OpenCL
High-Level-Synthese
Hardware/Software Co-Design |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Hörakustik</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Psychoacoustics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Jesko L. Verhey, FME weitere Lehrende: Prof. H. Rotten-gruber</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Jesko L. Verhey, FME weitere Lehrende: Prof. H. Rotten-gruber</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung 2 SWS, Übung 1 SWS, Selbstständiges Arbeiten: Nachbereitung der Vorlesung, Belegarbeiten zur Übungsvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und zu erwerbende Kompetenzen: Kenntnisse der hörakustischen Grundgrößen Grundkenntnisse der Messverfahren zur Hörakustik Grundkenntnisse für die perceptive Charakterisierung von Umweltgeräuschen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen und Grundbegriffe der Hörakustik, Empfindungsgrößen und ihre Relation zu physikalischen Parametern Differentielle Wahrnehmung, Verdeckung Berechnungsverfahren zur Bestimmung der Lautheit als eine grundlegende Empfindungsgröße der Hörakustik Wahrnehmung von Pegelschwankungen und ihre Bedeutung bei der Bewertung von technischen Geräuschen, z.B. Rauigkeit Charakterisierung der Wahrnehmung tonaler Schalle, d.h., Tonhöhe, Tonhaltigkeit, Klangfarbe, Anwendung auf Motorschalle Beidohrige Hörwahrnehmung</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung: mündlich</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Human Factors</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Human Factors</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Deml</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Brennecke, Deml</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung: 2 SWS, Übung: 1 SWS Selbstständige Arbeit: Nachbereitung der Vorlesungen Vorbereitung der schriftlichen Prüfung 75 h (42 h Präsenzzeit + 33 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Teilnahme an Vorlesungen Bestehen der schriftlichen Prüfung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Gegenstand, Definition, Ziele und Bestandteile der</td>
<td></td>
</tr>
<tr>
<td>Arbeitswissenschaft</td>
<td></td>
</tr>
<tr>
<td>Physiologische und psychologische</td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Arbeit</td>
<td></td>
</tr>
<tr>
<td>Arbeitsplatzgestaltung</td>
<td></td>
</tr>
<tr>
<td>Gestaltung von Bildschirmarbeit</td>
<td></td>
</tr>
<tr>
<td>Arbeitsumweltgestaltung (Lärm, Beleuchtung)</td>
<td></td>
</tr>
<tr>
<td>Arbeitsorganisation</td>
<td></td>
</tr>
<tr>
<td>Menschliche Informationsverarbeitung</td>
<td></td>
</tr>
<tr>
<td>Mensch-Maschine-Interaktion</td>
<td></td>
</tr>
<tr>
<td>Menschliche Zuverlässigkeit und Fehler</td>
<td></td>
</tr>
<tr>
<td>Zeitwirtschaft</td>
<td></td>
</tr>
<tr>
<td>Arbeitssicherheit und Gesundheitsschutz</td>
<td></td>
</tr>
</tbody>
</table>

| Studien-/ Prüfungsleistungen: |
| Schriftliche Prüfung |

| Medienformen: |
| Powerpoint |

<p>| Literatur: |
| Wird in der Vorlesung bereitgestellt |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Human-Centred Approaches and Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Human-Centred Approaches and Technologies</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Human-Centred Approaches and Technologies</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>HCAT</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Ernesto W. De Luca</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Ernesto W. De Luca / Erasmo Purificato</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Master 180h = 52h (4 SWS) Präsenzzeit + 98h selbstständige Arbeit + 30h Projektarbeit Attendance times: weekly seminar: 2 SWS / weekly project: 2 SWS Independent work: 98h independent work (readings; follow-up of the lecture, preparation of paper, reviews and presentation as part of the exam). Project: 30h work on one of the proposed projects in HCAT. 180h = 52h (4 SWS) attendance time + 98h independent work + 30h project work</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Machine Learning</td>
</tr>
<tr>
<td></td>
<td>Information Retrieval</td>
</tr>
<tr>
<td></td>
<td>Data Science</td>
</tr>
<tr>
<td></td>
<td>Data Mining</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Natural Language Processing</td>
</tr>
<tr>
<td></td>
<td>Introduction to Deep Learning</td>
</tr>
<tr>
<td></td>
<td>Human-Centred Artificial Intelligence</td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse: | Understanding of scientific writing
| | Ability to evaluate scientific papers
| | Involvement in scientific conferences
| | Familiarity with online submission and review platforms |
| Inhalt: | Scientific Writing
| | Understanding of Scientific Conferences
| | Reviewing Papers and related process
| | Conducting a comprehensive systematic research literature review
| | Evaluating research papers and the work of fellow students
| | Delivering a final presentation and paper, which could be presented on a conference event
| | Topics: Human-Centred Artificial Intelligence and Human-Centred Design |
| Studien-/ Prüfungsleistungen: | Scientific paper
| | Reviews on other papers
| | Presentation of the own results presented in the paper. |
| Medienformen: |
| | - A. Schmidt, “Interactive Human Centered Artificial Intelligence: A Definition and Research Challenges”.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Human-Centred Artificial Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Human-Centred Artificial Intelligence</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Human-Centred Artificial Intelligence</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>HCAI</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>---</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 3./ 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>---</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ernesto De Luca</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ernesto De Luca</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen
FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure
FIN: M.Sc. DIGIENG - Human Factors
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINFO - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung; Projekt |
| Arbeitsaufwand: | Präsenzeiten:
wöchentl. Vorlesung 2SWS / wöchentl. Übung/Projekt 2 SWS
Selbstständiges Arbeiten:
124h selbstständige Arbeit (Bearbeitung von Übungsaufgaben, Nachbereitung der Vorlesung, Vorbereitung auf die Prüfung)
180h = 56h (4SWS) Präsenzzeit + 124h selbstständige Arbeit |
| Kreditpunkte: | 6 CP |
| Voraussetzungen nach Prüfungsordnung: | Machine Learning
Information Retrieval
Data Science
Data Mining
Fundamentals of Natural Language Processing
Introduction to Deep Learning |
| Angestrebte Lernergebnisse: | Human-Centred AI principles; Responsible AI principles;
Introduction to fairness and explainability; Ethics in AI;
Applications of HCAI methods on deep learning architecture and natural language processing algorithms; User Experience and Usability; Approaches to project management and planning. |
Inhalt:

Introduction to Human-Centred Artificial Intelligence:
- Human values in AI
- The role of stakeholders
- Novel HCAI Framework and Paradigms
- Threats in AI
- Interactive Human-Centred AI

Introduction to Responsible Artificial Intelligence:
- Ethical theories and ethics in practice
- Responsible research and innovation
- The ART of AI: Accountability, Responsibility, Transparency
- Ensuring Responsible AI in practice
- AI and Society

Beyond-accuracy perspectives:
- Privacy
- Fairness and Biases
- Explainable Artificial Intelligence (XAI)
- Accountability
- Security and Safety

Approaches to project management and planning:
- Project management
- People management and Teamwork
- Agile development
- Risk management
- Estimation techniques and project pricing
- Quality standards and management

Studien-/ Prüfungsleistungen:

Leistungen:
- Bearbeitung der Übungen
- Bearbeitung der Programmieraufgaben
- Erfolgreiche Präsentation der Ergebnisse des Projekts

Schriftliche Prüfung (auch für Schein).

Vorleistungen entsprechend Angabe zum Semesterbeginn.

Medienformen:

Literatur:

- A. Schmidt, “Interactive Human Centered Artificial Intelligence: A Definition and Research Challenges”.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Human-Centred Natural Language Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Human-Centred Natural Language Processing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>HCNLP</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Ernesto William De Luca</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Ernesto William De Luca</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchtl. Blockseminar Selbstständiges Arbeiten: 98h selbständige Arbeit (Bearbeitung von Übungsaufgaben; Nachbereitung der Vorlesung, Vorbereitung auf die Prüfung) Projekt für Masterstudierende: 30h Arbeit an einem der vorgeschlagenen Projekte in HCNLP Master 180h = 52h (4 SWS) Präsenzzeit + 98h selbstständige Arbeit + 30h Projektarbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Human-Centred NLP principles; Language Representation and Language Engineering, NLP Models (rule-based, count-based, prediction-based); Dataset Creation and Curation; Human-Computer Interaction, Human-Centred Evaluation of NLP Systems, Human-Centred Design, Human-Centred NLP Applications, Human-AI Collaboration</td>
</tr>
</tbody>
</table>
Inhalt:
- What is Human-Centered Natural Language Processing
- Traditional Natural Language Processing: Rule-based and Count-based Models
- Modern Natural Language Processing: Prediction-based Models
- Language Engineering
- Dataset Creation
- Dataset Curation with Human Values in Mind
- Human-Computer Interaction
- Human-Centered Evaluation of NLP Systems
- Human-Centered Design of NLP Systems
- Human-Centered NLP Applications: Digital Humanities, Legal Artificial Intelligence, Recommender Systems
- Human-AI Collaboration and Future Directions

Studien-/ Prüfungsleistungen:
Leistungen:
- Bearbeitung der Übungen;
- Bearbeitung der Programmieraufgaben;
- Erfolgreiche Präsentation der Ergebnisse des Projekts.

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Hybride Discrete Event Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Hybride Discrete Event Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Hybride Discrete Event Systems</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Rolf Findeisen (FEIT-IFAT) / Dr.-Ing. Jürgen Ihlow (FEIT-IFAT)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Rolf Findeisen (FEIT-IFAT) / Dr.-Ing. Jürgen Ihlow (FEIT-IFAT)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>3 SWS = 150h (42h Präsenzzeit +108h selbständige Arbeit)</td>
</tr>
<tr>
<td>Präsenzzeiten: wöchentliche Vorlesung 2 SWS, wöchentliche Übungen 1 SWS, Selbständiges Arbeiten: Nachbereitung der Vorlesung, Lösung der Übungsaufgaben und Prüfungsvorbereitung, Projektarbeit</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Regelungstechnik, Steuerungstechnik, Ereignisdiskrete Systeme</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und erworbene Kompetenzen: The module provides an introduction to the theory, description and analysis of systems that contains continuous, discrete and event driven dynamics. Specific focus is set on the introduction of various system descriptions, on the analysis of the properties of the systems, as well as on the design and development of suitable control and observation methods</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Hybride Dynamical Systems: Signals, information, states and inputs, general system description, basic system propertiesDescription of hybrid dynamical systems: Modeling, time-behavior, hybrid states, events, automata, petri-networksAnalysis of hybrid-discrete event systems: stability, reachability, accesabilityDesign for hybride systems</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Idea Engineering</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Idea Engineering</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IE</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Graham Horton</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 Stunden (56 h Präsenzzeit + 94 h selbständiges Arbeiten)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen: Aufgabengerechte Entwicklung v. Ideenfindungstechniken Meilensteinorientierte Projektarbeit im Team Planung und Moderation von Workshops Fähigkeit, kreativ zu denken und Ideen zu produzieren Führung und Strukturierung von Diskussionen Präsentation und Berichterstattung eigener Arbeitsergebnisse unter Verwendung digitaler Medienformen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>InnovationsprozessGrundlagen von Ideenfindungstechniken Perspektivwechsel Bewertung von Ideen Selektion und Ausbau von Ideen Klassische Kreativitätstechniken Werbeideenproduktion</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung Benotet: Hausarbeit Unbenotet: Bestehen der Hausarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Siehe www.sim.ovgu.de</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>IDE-Projekt I-III</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>IDE Project I-III</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Christiane Beyer, FMB-IMK</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Image Coding</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Image Coding</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IC</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Gerald Krell</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Gerald Krell</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Bildinformationstechnik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Ingenieurinformatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 3 SWS (2 SWS Vorlesung + 1 SWS Übung) = 150h = 42h</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit + 108h selbständige Arbeit</td>
</tr>
<tr>
<td></td>
<td>Selbstdiges Arbeiten: Vorlesungsnachbereitung, Übungsaufgaben, Prüfungsvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Notenskala gemäß Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik/Physik für Ingenieure/Informatiker o.ä., Grundlagen der Informationstechnik, Grundlagen der Elektronik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen, Verlustfreie Kodierung, Verlustbehaftete Kodierung, Semantische Kodierung, Standards</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung: mündlich (30 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe Skript</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Immunologie</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Immunologie</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FME, Prof. Dr. B. Schraven</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>FME, Prof. Dr. B. Schraven</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Biologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform / SWS:</th>
<th>Vorlesung; Praktikum</th>
</tr>
</thead>
</table>
| Arbeitsaufwand: | Präsenzzeiten:
| | • 2 SWS Vorlesung / 2 SWS Praktikum
| | Selbstständiges Arbeiten:
| | • Nacharbeiten der Vorlesung
| | • Vor- und Nachbereiten des Praktikums
| | Vorlesung: 3 CP = 90 h (28h Präsenzzeit + 62h selbstständige Arbeit)
| | Praktikum: 2 CP = 60 h (28h Präsenzzeit + 32h selbstständige Arbeit) |

| Kreditpunkte: | Vorlesung: 3
| | Praktikum: 2 |

| Voraussetzungen nach Prüfungsordnung: | Bestandene Klausur Immunologie ist Voraussetzung für Teilnahme am Praktikum |

| Empfohlene Voraussetzungen: | |

| Angestrebte Lernergebnisse: | Die Studenten entwickeln die Fähigkeit, spezifische Merkmale und systematische Probleme der Immunologie zu beschreiben und zu beurteilen.
| | Im Praktikum werden die Studenten geschult, die spezifischen Arbeitstechniken des Fachgebiets sicher zu beherrschen. |

| Inhalt: | Einführung in die Immunologie
| | Immunorgane
| | Immunzellen
| | Immunmechanismen
| | Immunität |

| Studien-/Prüfungsleistungen: | Klausur 2 Std.
| | Praktikumsschein |

Seite 311 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Wird in der Vorlesung bekannt gegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Implementierungstechniken für Software-Produktlinien</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Implementation Techniques for Software Product Lines</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ISP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Gunter Saake</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Ingenieurinformatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>5 CP: 150h = 56h Präsenz + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td></td>
<td>6 CP: 180h = 150h + 30h zusätzliche Aufgaben</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5 CP</td>
</tr>
<tr>
<td></td>
<td>Master: 6 CP</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorausgesetzt werden Grundlagen der Softwaretechnik; Grundkenntnisse über Compilierbau und Konzepte von Programmiersprachen werden empfohlen</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Verständnis von Grenzen traditioneller Programmierparadigmen bzgl. der Entwicklung von InformationssystemenKenntnisse über</td>
</tr>
</tbody>
</table>
moderne, erweiterte Programmierparadigmen mit Fokus auf die Erstellung maßgeschneiderter Systeme
Befähigung zur Bewertung, Auswahl

| Inhalt: | Einführung in die Problematik maßgeschneiderter Systeme am Beispiel von eingebetteten DBMS-Modellierung und Implementierung von Software-Produktlinien
Einführung in Grundkonzepte (u.a. Separation of Concerns, Information Hiding, Modularisierung, Strukturierte Programmierung und Entwurf)
Überblick über erweiterte Programmierkonzepte u.a. Komponenten, Design Pattern, Meta-Objekt-Protokolle und Aspekt-orientierte Programmierung, Kollaborationen und Feature-orientierte Programmierung |
| Studien-/Prüfungsleistungen: | Vorlesung und vorlesungsbegleitende Übung mit Fragenkatalogen einschließlich eines Programmierpraktikums zu einem ausgewählten Thema der Vorlesung; selbständiges Bearbeiten der Übungs-aufgaben und des ausgewählten Themas als Voraussetzung für die Prüfung
Prüfung/Schein: mündlich |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Industrial 3D Scanning – Theory and Best-practises</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Industrial 3D Scanning – Theory and Best-practises</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>3D Scanning</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur Visualization</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Christian Teutsch (Fraunhofer IFF)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Time of attendance: 2 SWS Lecture, 2 SWS Seminar</td>
</tr>
<tr>
<td></td>
<td>Autonomous work: programming of algorithms in C/C++</td>
</tr>
<tr>
<td></td>
<td>180 h (56 h time of attendance + 124 h autonomous work)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Although no formal prerequisites are necessary, the lecture is primarily intended for students with a background in computer graphics or computer vision.</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>An understanding of 3D scanning in industrial metrology</td>
</tr>
<tr>
<td></td>
<td>An understanding of 3D data structures and processing algorithms</td>
</tr>
<tr>
<td></td>
<td>An understanding of algorithms that support the comparison of measured 3D data against CAD models</td>
</tr>
<tr>
<td></td>
<td>An understanding of methods to visualize large amounts of 3D data with modern graphics hardware</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>An introduction into 3D scanning technologies including typical industrial applications</td>
</tr>
<tr>
<td></td>
<td>Best-fit approximation of geometric primitives to 3D point clouds</td>
</tr>
<tr>
<td></td>
<td>Registration and spatial alignment of 3D point clouds to CAD models</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>tutorial certificate, oral exam</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Industriedesign-Designprojekt</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Industriedesign-Designprojekt</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Industriedesign-Designprojekt</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ID-Modul 3</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>HD Dipl.Designer, Dipl.-Ing. Thomas Gatzky</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>HD Dipl.Designer, Dipl.-Ing. Thomas Gatzky</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:
3 SWS Übung – Designprojekt (WS+SS)
Selbstständiges Arbeiten:
8 Std./Woche für Projektarbeiten=150h=3 SWS=42h
Präsenzzeit+108h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Interesse für gestalterische Aspekte des Produkt- und Umweltdesigns sowie eigene gestalterische Aktivitäten
Erfolgreicher Abschluss von ID-Modul 1 und 2</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und erworbene Kompetenzen
Vertiefende Fähigkeiten und Fertigkeiten zum zeichnerischen und computerunterstützten Designentwurf
Kompetenzen zu entwurfsmethodischen Vorgehensweisen im Industriedesign in interdisziplinären Teams</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Methodisch unterstütztes Entwerfen von Produkten und Umweltsituationen
Klassische und computerunterstützte Visualisierungstechniken
Erlangung von erweiterten Fertigkeiten bei der Anwendung der CAID-Software Alias/Wavefront Studio Tools
Komplexe Visualisierungen mit Schnittstellen zu CAD-Systemen und zur Bildgestaltung</td>
</tr>
<tr>
<td>Komplexer Entwurf von Produkten-Mitarbeit in einem interdisziplinären Team (IPE-Projekt/Designprojekt)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen: Benotete Bewertung der Projektarbeit (Präsentation und Projektdokumentation)</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Informatik vermitteln - Entwicklung und Umsetzung medienpädagogischer Projekte</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Informatik vermitteln - Entwicklung und Umsetzung medienpädagogischer Projekte</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FIN/ISG; Dr. Henry Herper</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>FIN/ISG; Dr. Henry Herper</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Allgemeine Visualistik - Erziehungswissenschaft MB: 9, 10, 11, 13</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS = 28h Selbstständiges Arbeiten: 152h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Die Studierenden können eigenständig medienpädagogische Konzepte mit informatorischen Inhalten entwickeln können diese Konzepte didaktisch fundiert in der Praxis umsetzen kennen grundlegende Prinzipien der Projektentwicklung kennen rechtliche Rahmenbedingungen beim Umgang mit digitalen Medien sind in der Lage, ein Projekt studiengangsübergreifend umzusetzen können Informatikinhalte zielgruppenspezifisch strukturieren</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundkonzepte der Projektentwicklung Didaktische Prinzipien des Unterrichts Erstellung und Verwaltung von digitalen Unterrichtsmaterialien Bildungsstandards und deren curriculare Umsetzung rechtliche Rahmenbedingungen beim Einsatz digitaler Medien im pädagogischen Umfeld</td>
</tr>
<tr>
<td>theoretische Bezüge zum Umgang mit Digitalität im gesellschaftlichen und lebensweltlichen Alltag</td>
<td>Impulse für informatikbezogene Projektideen Entwicklung und Durchführung zielgruppenspezifischer Informatikprojekte</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Hausarbeit, Durchführung eines Kurses</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>IR</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Andreas Nürnberger</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Andreas Nürnberger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods II</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Bearbeitung von Übungs- und Programmieraufgaben;</td>
</tr>
<tr>
<td></td>
<td>Nachbereitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Teilnahmevoraussetzungen:</td>
</tr>
<tr>
<td></td>
<td>Algorithmen und Datenstrukturen</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Vertieftes Verständnis für Probleme der Informationssuche</td>
</tr>
<tr>
<td></td>
<td>Kenntnis von Datenstrukturen und Algorithmen, die den Studierenden zur selbständigen</td>
</tr>
<tr>
<td></td>
<td>Entwicklung und Evaluierung von Information Retrieval</td>
</tr>
<tr>
<td></td>
<td>Systemen befähigen.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Statistische Eigenschaften von Texten, Retrieval Modelle und</td>
</tr>
<tr>
<td></td>
<td>Datenstrukturen, Relevanz-Feedback, Evaluierung, Grundlagen</td>
</tr>
<tr>
<td>von XML, Strukturierung von Datensammlungen (Clustering, Kategorisierung), Struktur und Algorithmen von Internet Suchmaschinen, Grundlagen von Multimedia Retrieval Systemen, Schnittstellen Design</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Leistungen: Vorleistungen entsprechend Angabe zum Semesterbeginn (Votierungen, Programmieraufgaben)</td>
<td></td>
</tr>
<tr>
<td>Prüfung: schriftlich (auch für Schein)</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Informations- und Codierungstheorie</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Informations- und Codierungstheorie</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Informations- und Codierungstheorie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Hochfrequenz- und Kommunikationstechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Hochfrequenz- und Kommunikationstechnik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten
2SWS (Vorlesung) + 1SWS (optionale Übung)
Selbstständiges Arbeiten
Vorlesungsnachbereitung
90h (28h Präsenzzeit +62h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Universitäres Grundwissen in Mathematik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und zu erwerbende Kompetenzen:
Vermittlung der Informationstheoretischen Konzepte
Informationsgehalt, Entropie, Redundanz, Quellencodierung, Kanalkapazität, Kanalcodierung, Hamming-Raum und Hamming-Distanz
Erstellung mathematischer Modell für die o. g. Konzepte
Behandlung ausgewählter Verfahren für die Quellen und Kanalcodierung
Behandlung ausgewählter Fehlerkorrigierender Decodierungsverfahren</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Informationsgehalt und Entropie diskreter Informationsquellen
Redundanz, Gedächtnis und Quellencodierung (Shannon-Fano- und Huffmann-Verfahren)
Kontinuierliche Quellen
Diskrete und kontinuierliche Kanäle, Kanalentropien und Kanalkapazität</td>
</tr>
<tr>
<td>Kanalcodierung und Hamming-Raum</td>
<td>Lineare Blockcodes</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Zyklische Codes</td>
</tr>
<tr>
<td></td>
<td>Syndromdecodierung</td>
</tr>
</tbody>
</table>

Studien-/Prüfungsleistungen:
Mündliche Prüfung oder Teilnahmeschein

Medienformen:

Literatur:
Modulbezeichnung: Informationstechnologie in Organisationen
engl. Modulbezeichnung: Information Technology in Organizations
Kürzel: ITO
Studiensemester: B.Sc. ab 3. Semester
Semesterlage: Sommersemester
Modulverantwortliche(r): Lehrstuhl Angewandte Informatik / Wirtschaftsinformatik II (Arbeitsgruppe KMD)
Dozent(in): Prof. Myra Spiliopoulou
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - Gestalten
Für Freigabe und Zuordnung zu Curricula von interdisziplinären Studiengängen und von Studiengängen außerhalb der FIN, s. Studiiumsdokumente des jeweiligen Studiengangs.

Lehrform / SWS:
Vorlesung; Übung

Arbeitsaufwand:
Präsenzzeiten: 2 SWS Vorlesung + 2 SWS Übung
Selbständiges Arbeiten:
Vor- und Nachbearbeitung der Vorlesung
Entwicklung von Lösungen für die Übungsaufgaben
Vorbereitung für die Abschlussprüfung
150h=4 SWS=56h Präsenzzeit+94h selbständige Arbeit

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung:

Empfohlene
Voraussetzungen:

Angestrebte Lernergebnisse:
Verständnis der Rolle der Informationstechnologie für das moderne Unternehmen
Erwerb von Kenntnissen zur Rolle der IT bei einer Auswahl von Geschäftsmodellen
Erwerb von Kenntnissen zu IT-Methoden für die Ableitung von Wissen aus Daten
Umgang mit Literatur zum Fachgebiet

Inhalt:
IT entlang der Wertschöpfungskette
Data Management
IT und das Internet, E-Commerce
Customer Relationship Management

Studien-/ Prüfungsleistungen:
Vorleistungen: Erfolgreiche Bearbeitung der Übungsaufgaben
Präsentationen von Ergebnissen

Seite 325 Inhaltsverzeichnis
Modalitäten werden zum Veranstaltungsbeginn angegeben. Prüfung: schriftlich

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Auszüge aus den Büchern</td>
</tr>
<tr>
<td></td>
<td>E-CommerceCRMManagementunterstützungDatenverwaltungswie Fallstudien</td>
</tr>
<tr>
<td></td>
<td>BUCH D: ‘Digitalisierung in Industrie, Handels- und Dienstleistungsunternehmen’ Lars Fend & Jürgen Hofmann (eds), 3. Auflage, SPRINGER GABLER, darunter Kapitel/Texteinheiten zu Digitale GeschäftsmodelleCRMsofallstudien</td>
</tr>
<tr>
<td></td>
<td>Auswahl von Inhalten aus den Kapiteln 3, 4 und 5</td>
</tr>
<tr>
<td></td>
<td>Details zum Syllabus werden während des Semesters in moodle eingetragen.</td>
</tr>
<tr>
<td></td>
<td>Die Literaturliste kann zusätzliche Fallstudien und weitere wissenschaftliche Arbeiten umfassen.</td>
</tr>
<tr>
<td></td>
<td>Diese werden am Anfang des jeweiligen Veranstaltungsblocks bekannt gegeben.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>In-Memory und Cloud-Technologien 1</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>In-Memory and Cloud-Technologies 1</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IMCloud 1</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Hon. Prof. Dr. Alexander Zeier</td>
</tr>
<tr>
<td>Veranstaltungsort:</td>
<td>Magdeburg</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 20 h:</td>
</tr>
<tr>
<td></td>
<td>•20 h Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten = 70 h:</td>
</tr>
<tr>
<td></td>
<td>•20 h Vorbereitung auf die Vorlesung – Lesen der empfohlenen Literatur</td>
</tr>
<tr>
<td></td>
<td>•50 h Nachbereitung der Vorlesung – Ausarbeitung eines wissenschaftlichen Short Papers/Posters</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 Credit Points = 3*30 h = 90 h (20 h Präsenzzeit + 70 h selbstständige Arbeit)</td>
</tr>
<tr>
<td></td>
<td>Notenskala gemäß Prüfungsordnung</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Veranstaltung „Datenbanken I“ und „Datenbanken II“</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>•Einführung: In-Memory-Technologie mit Focus auf SAP HANA</td>
</tr>
<tr>
<td></td>
<td>•Einführung: Cloud-Technologie mit Focus auf Google Cloud</td>
</tr>
<tr>
<td></td>
<td>•Digital Decoupling on Cloud for SAP Systems</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>In-Memory Technologie und Anwendungen mit Focus auf SAP HANA:</td>
</tr>
<tr>
<td>Erläuterung der In-Memory-Technologie mit Focus auf SAP HANA</td>
<td></td>
</tr>
<tr>
<td>Zeilen- versus Spaltenhauptspeicherdatenbanken</td>
<td></td>
</tr>
<tr>
<td>Komprimierungs-, Partitionierungs- und Indexierungsansätze Google Cloud Technology und Services, Einsatz z.B. von Anthos, Bigquery, und AutoML.</td>
<td></td>
</tr>
</tbody>
</table>

Die Teilnehmerzahl für das Seminar ist auf 20 Personen beschränkt.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Prüfungszulassung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfnahme an der Veranstaltung</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform:</td>
<td></td>
</tr>
<tr>
<td>Schriftliche Hausarbeit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>In-Memory und Cloud-Technologien 2</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>In-Memory und Cloud-Technologies 2</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IMCloud 2</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Hon. Prof. Dr. Alexander Zeier</td>
</tr>
<tr>
<td>Veranstaltungsort:</td>
<td>Kronberg (Frankfurt am Main)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 40 h:</td>
</tr>
<tr>
<td></td>
<td>• 40 h Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten = 50 h:</td>
</tr>
<tr>
<td></td>
<td>• 50 h Vor- und Nachbereitung der Vorlesung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 Credit Points = 3*30 h = 90 h (40 h Präsenzzeit + 50 h selbstständige Arbeit)</td>
</tr>
<tr>
<td></td>
<td>Notenskala gemäß Prüfungsordnung</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Veranstaltung „Datenbanken I“ und „Datenbanken II“ – optional</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>• Vertiefung: In-Memory-Technologie mit Focus auf SAP HANA</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>In-Memory Technologie und Anwendungen mit Focus auf SAP HANA:</td>
</tr>
<tr>
<td></td>
<td>• Entwicklung von Hochverfügbarkeitslösungen und Backupstrategien</td>
</tr>
<tr>
<td></td>
<td>• Erweiterung des Datenlayouts ohne Downtime</td>
</tr>
<tr>
<td></td>
<td>• Migrationsansätze für Projekte in denen In-Memory Datenbanken eingesetzt werden</td>
</tr>
<tr>
<td></td>
<td>Aufgrund der Bereitstellung und des Zugangs zum lizenzierten SAP HANA Systems und weiterer kostenpflichtiger Anwendungen, ist die Teilnehmeranzahl der Veranstaltung begrenzt.</td>
</tr>
</tbody>
</table>

Seite 329 **Inhaltsverzeichnis**
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Prüfungszulassung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Teilnahme an der Veranstaltung</td>
<td></td>
</tr>
<tr>
<td>Prüfungsform:</td>
<td></td>
</tr>
<tr>
<td>• Schriftliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>

Cloud Computing, Blog (July 2020) zu Digital Decoupling. Title: Trapped by legacy systems, CIOs look for a way out
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>In-Memory und Cloud-Technologien 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>In-Memory und Cloud-Technologies 3</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IMCloud 3</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Hon. Prof. Dr. Alexander Zeier</td>
</tr>
<tr>
<td>Veranstaltungsort:</td>
<td>Magdeburg</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Übung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 34 h:</td>
</tr>
<tr>
<td></td>
<td>•28 h Übung</td>
</tr>
<tr>
<td></td>
<td>•6 h Sprint Meetings</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten = 146 h:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>•146 h Bearbeiten eines Projektes (innerhalb von 12 Wochen)</td>
</tr>
<tr>
<td></td>
<td>oUmsetzung eines Projektes mit Focus auf die Nutzung einer In-Memory Datenbank</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 Credit Points = 6*30 h = 180 h (34 h Präsenzzeit + 146 h selbständige Arbeit)</td>
</tr>
<tr>
<td>Notenskala gemäß Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Veranstaltung „Datenbanken I“ und „Datenbanken II“ – optional</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Veranstaltung „In-Memory und Cloud Technologien 2“ – optional</td>
</tr>
<tr>
<td></td>
<td>Veranstaltung „In-Memory und Cloud Technologien 1“ ist Pflicht</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>•Befähigung zum Einsatz der In-Memory-Technologie</td>
</tr>
<tr>
<td></td>
<td>•Kenntnisse über Datenbeschaffung und</td>
</tr>
</tbody>
</table>

Seite 331 Inhaltsverzeichnis
- Modellierung in SAP Hana
 • Kenntnisse über die Programmierung von SAP HANA
 Applikationen (HTML5, Javascript, SQL)
 • Einführung und Verwendung von Cloud-Technologie mit Focus
 auf Google Cloud
 • Digital Decoupling on Cloud for SAP Systems

| Inhalt: | In-Memory Technologie und Anwendungen mit Focus auf SAP HANA:
 • Einsatz von Multi-Core und Hauptspeicher
 • Zugriffmuster in der Speicherhierarchie
 • Parallele Datenverarbeitung mittels Multi-Core
 • SQL für den Zugriff auf In-Memory-Daten
 • Aktive und passive Datenhaltung
 Google Cloud Technologie und Services, Einsatz z.B. von Anthos,
Bigquery, und AutoML.
Aufgrund der Bereitstellung und des Zugangs zum lizensierten
SAP HANA Systems und weiterer kostenpflichtiger
Anwendungen, ist die Teilnehmeranzahl der Veranstaltung
begrenzt. |

| Studien-/Prüfungsleistungen: | Teilnahme an der Übung
Mündliche Prüfung am Ende des Semesters; |

| Medienformen: | Plattner, H., Zeier, A.: In-Memory Data Management:
Technology and Applications, Springer Verlag, 2. Auflage, Mai
Whitepaper “HANA on Intel: Three Steps to Reinvent Your
Enterprise as a Digital Disrupter” von Prof. Dr. Alexander Zeier &
Cloud Computing, Blog (July 2020) zu Digital Decoupling. Title:
Trapped by legacy systems, CIOs look for a way out

| Literatur: | Plattner, H., Zeier, A.: In-Memory Data Management:
Technology and Applications, Springer Verlag, 2. Auflage, Mai
Whitepaper “HANA on Intel: Three Steps to Reinvent Your
Enterprise as a Digital Disrupter” von Prof. Dr. Alexander Zeier &
Cloud Computing, Blog (July 2020) zu Digital Decoupling. Title:
Trapped by legacy systems, CIOs look for a way out
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Innovative Mess- und Prüftechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Innovative testing technology</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Molitor, FMB-IFQ</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Molitor, FMB-IFQ</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit: Vorlesungen: 2 SWS, Übungen: 1 SWS</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Vor- und Nachbereiten der Lehrveranstaltungen, Literaturstudium</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundkenntnisse in der Fertigungslehre und in der Messtechnik (Fertigungsverfahren, physikalisch-technische Grundprinzipien der Messtechnik)</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Erwerb von Kenntnissen über innovative Messtechniken im industriellen Einsatz.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Rechnerunterstützte optoelektronische Messverfahren Integration von akzelerativen und kameraelektronischen Sensoren in Form von komplexen Messgeräteeinheiten Sensoreinsatz in der Prüfstandstechnik Telemetrie bei Übertragung von Sensorsignalen Klassifizierungsverfahren im n-dimensionalen Merkmalsraum</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung (30 min.)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Integrierte Produktentwicklung 1</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Integrated Product Development 1</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IPE 1</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Maschinenbauinformatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Maschinenbauinformatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Konstruktion & Design FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung 1 SWS Übung Selbständiges Arbeiten: Nachbereitung der Vorlesung, selbständige Projekt- und Übungsarbeit außerhalb der eigentlichen Übungstermine 4 Credit Points = 120 h = 3 SWS = 42 h Präsenzeit + 78 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>CAx-Grundlagen oder gleichwertige Vorlesung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in die Projektarbeit der Integrierten Produktentwicklung Evolution der Produktentwicklung Einführung in die Integrierte Produktentwicklung Produkteigenschaften i. d. Integrierten Produktentwicklung</td>
</tr>
<tr>
<td>Organisatorische Aspekte der ProduktentwicklungProjekt- und Prozessmanagement</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen: Leistungen: Testat über eine erfolgreiche Projektarbeit, Prüfung: schriftlich (120 min)</td>
<td></td>
</tr>
<tr>
<td>Medienformen: Beamer, Overhead, Tafel</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Intelligent Data Analysis</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Intelligent Data Analysis</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IDA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Computational Intelligence</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Rudolf Kruse</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Time of attendance = 56 hours:</td>
</tr>
<tr>
<td></td>
<td>2 SWS lecture</td>
</tr>
<tr>
<td></td>
<td>2 SWS exercise</td>
</tr>
<tr>
<td>Bachelor: Independent work = 94 hours:</td>
<td></td>
</tr>
<tr>
<td>Pre- and post-work for lecture and exercise</td>
<td></td>
</tr>
<tr>
<td>Solving exercise tasks</td>
<td></td>
</tr>
<tr>
<td>Master: Independent work = 124 hours:</td>
<td></td>
</tr>
<tr>
<td>Pre- and post-work for lecture and exercise</td>
<td></td>
</tr>
<tr>
<td>Solving exercise tasks</td>
<td></td>
</tr>
<tr>
<td>additional practical exercise</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5</td>
</tr>
<tr>
<td></td>
<td>Master: 6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Foundations of probability theory and statistics</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Conveying of fundamental concepts and methods for analyzing data by means of method from intelligent systems</td>
</tr>
<tr>
<td></td>
<td>Participants will be able to use techniques for data analysis</td>
</tr>
<tr>
<td></td>
<td>Participants will know the most important methods for solving data analysis problems</td>
</tr>
<tr>
<td></td>
<td>Participants will know exemplary applications and understand their mode of operation</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Different types of dataStatistical concepts of data analysisRegression analysisClustering and classificationDecision TreesTime Series AnalysisStochastical search methods</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Written exam, duration: 120 minutes, prerequisites: Solve at least 2/3 exercise tasks Successful presentation during exercise „Schein“ Solve at least 2/3 exercise tasks Successful presentation during exercise Pass an oral colloquium</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Intelligente Systeme</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Intelligent Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Computational Intelligence</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Sanaz Mostaghim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit = 56 Stunden:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbständige Arbeit = 94 Stunden:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung von Vorlesung und Übung</td>
</tr>
<tr>
<td></td>
<td>Bearbeiten von Übungs- und Programmieraufgaben</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik I bis IV</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Befähigung zur Modellierung und Erstellung wissensintensiver Anwendungen durch Auswahl problemensprechender Modellierungstechniken</td>
</tr>
<tr>
<td></td>
<td>Anwendung heuristischer Suchverfahren und lernender Systeme zur Bewältigung großer Datenmengen</td>
</tr>
<tr>
<td></td>
<td>Befähigung zur Entwicklung und Bewertung intelligenter und entscheidungsunterstützender Systeme</td>
</tr>
<tr>
<td></td>
<td>Bewertung und Anwendung von Modellansätzen zur Entwicklung kognitiver Systeme</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Eigenschaften intelligenter Systeme</td>
</tr>
<tr>
<td></td>
<td>Modellierungstechniken für wissensintensive Anwendungen</td>
</tr>
<tr>
<td></td>
<td>Subsymbolische Lösungsverfahren</td>
</tr>
<tr>
<td></td>
<td>Heuristische Suchverfahren</td>
</tr>
<tr>
<td></td>
<td>Lernende Systeme</td>
</tr>
<tr>
<td></td>
<td>Modellansätze für kognitive Systeme</td>
</tr>
<tr>
<td></td>
<td>Wissensrevision und Ontologien</td>
</tr>
<tr>
<td></td>
<td>Entscheidungsunterstützende Systeme</td>
</tr>
<tr>
<td></td>
<td>Weitere aktuelle Methoden für die Entwicklung Intelligenter Systeme wie Kausale Netze, Unscharfes Schließen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen</td>
<td>Prüfung in schriftlicher Form, Umfang: 2 Stunden, notwendige Vorleistungen werden in erster Veranstaltungswoche und auf Vorlesungswebseite angekündigt. Schein: schriftlich oder mündlich, notwendige Vorleistungen werden in erster Veranstaltungswoche und auf Vorlesungswebseite angekündigt</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Interaktive Systeme</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Interactive Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Visualisierung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Bernhard Preim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| **Zuordnung zum Curriculum:** | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. CV - Anwendungsfach - Computerspiele
FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INFINF - Studienprofil - Computer Games
FIN: B.Sc. INFINF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INFINF - WPF Informatik
FIN: B.Sc. INFINF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK
FIN: M.Sc. DIGIENG - Methoden der Informatik |
| **Lehrform / SWS:** | Vorlesung; Übung |
| **Arbeitsaufwand:** | Präsenzzeiten:
2 SWS Vorlesung/2 SWS Übung
Selbständige Arbeit:
Nachbereiten der Vorlesung
Lösen von Übungsaufgaben
Projektentwicklung
150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit |
| **Kreditpunkte:** | 5 |
| **Voraussetzungen nach Prüfungsordnung:** | |
| **Empfohlene Voraussetzungen:** | Algorithmen und Datenstrukturen |
| **Angestrebte Lernergebnisse:** | Lernziele & erworbene Kompetenzen:
Grundlegendes Verständnis der Mensch-Computer-Interaktion
Anwendung von Kenntnissen über die menschliche
Wahrnehmung bei der Gestaltung und Bewertung von
Benutzungsschnittstellen
Aufgaben- und benutzerabhängige Auswahl von
Interaktionstechniken |
Fähigkeit zur selbständigen Konzeption, Durchführung und Interpretation von Benutzerstudien
Beherrschung des Usability Engineerings unter Einhaltung von Rahmenbedingungen und Ressourcenbeschränkungen (systematisches Erzeugen gut benutzbare Systeme)

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Technische Grundlagen der Mensch-Computer-Interaktion (Fenster-, Menü- und Dialogsysteme) Interaktionstechniken und Interaktionsaufgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kognitive Grundlagen der Mensch-Computer-Interaktion Analyse von Aufgaben und Benutzern Prototypentwicklung und EvaluierungSpezifikation von Benutzungsschnittstellen</td>
</tr>
</tbody>
</table>

| Studien-/ Prüfungsleistungen: | Prüfungsvorleistungen s. Vorlesung |
| | Prüfung: Klausur 120 Min. |

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
</table>

<p>| Literatur: | Preim/Dachselt: Interaktive Systeme. Springer 2010 |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Interaktives Information Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Interactive Information Retrieval</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IIR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Data and Knowledge Engineering</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Tatiana Gossen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Bereich Methods II</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | Präsenzzeiten:
| | wöchentliche Vorlesungen 2 SWS |
| | wöchentliche Übungen 2 SWS |
| | Selbstständiges Arbeiten:
| | Übungsaufgaben & Prüfungsvorbereitung |
| | 180h (56h Präsenzzeit in den Vorlesungen & Übungen + 124h selbstständige Arbeit) |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | Grundlegende Kenntnisse von Information Retrieval |
| Empfohlene Voraussetzungen: | Grundlegende Kenntnisse von Information Retrieval |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
| | Die Teilnehmer gewinnen einen Einblick in die Besonderheiten der Mensch-Maschine-Interaktion im Bereich der interaktiven Informationssuche (vor allem im Web) |
| | Die Teilnehmer können selbständig maßgeschneiderte interaktive Informationssysteme konzipieren und entwickeln |
| Inhalt: | Modelle zur Informationssuche
| | Prinzipien des Information Retrieval |
| | Modellierung der Suche (Nutzermodellierung) |
| | Kontext und Personalisierung |
| | Design der Benutzerschnittstellen zur Suche |
| | Benutzerschnittstellen für interaktive Retrieval Systeme (z.B. zur kollaborativen Suche, explorativen Suche) |
| | Evaluation und Analyse von IIR-Systemen mittels Logfile Analyse und Eye-tracking |
| Studien-/ Prüfungsleistungen: | Leistungen:

Seite 342 **Inhaltsverzeichnis**
<table>
<thead>
<tr>
<th>Regelmäßige Teilnahme an den Vorlesungen</th>
<th>Medienformen: Power Point, Tafel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lösen der Übungsaufgaben und erfolgreiche Präsentation in den Übungen</td>
<td>Literatur: Siehe Webseite</td>
</tr>
<tr>
<td>Prüfung: mündlich (auch für Schein)</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Intercultural Workshop: Studying at OvGU - Differences and Similarities in Turkish and German higher education</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Intercultural Workshop: Studying at OvGU - Differences and Similarities in Turkish and German higher education</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Mesut Günes</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Mesut Günes</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INF</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Blockveranstaltung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>30h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>1 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen: Aufbau des Studiums und Studientechniken Kommunikation und Zusammenarbeit effektive und effiziente Studien- und Prüfungsplanung erfolgreiches Studieren in Deutschland</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Studienplanung & erfolgreiches Studieren Ziele & zielorientiertes Handeln Zeitmanagement & Zeitplanung Selbstständig denken und handeln Erfolgreiche Semester- und Studienplanung Erfolgreiche Prüfungsvor- und Nachbereitung Kulturelle Unterschiede/ Gemeinsamkeiten Deutschland und Türkei Studienrelevante Unterschiede/ Gemeinsamkeiten Deutschland und Türkei</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>-</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Interdisziplinäres Teamprojekt</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Interdisciplinary Team Project</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ITP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>angebotsspezifisch</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>angebotsspezifisch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>---</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Interdisziplinäres Teamprojekt</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Betreute Projektarbeit, Teamarbeit, Selbststudium, Präsentationen 180h = 12 Wochen a 14 Stunden</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>angebotsspezifisch</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Dieses Modul wird von unterschiedlichen Hochschullehrern implementiert. Die fachlichen Inhalte sind daher angebotsspezifisch.</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>angebotsspezifisch</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Introduction to Computer Graphics</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Computer Graphics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ICG</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Visual Computing</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Holger Theisel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure FIN: M.Sc. VC - Visual Computing - Pflichtfächer (nur anrechenbar wenn nicht vorher die deutschsprachige Bachelor-LV Computergraphik I belegt wurde)</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | In class teaching:
* 2 SWS lecture / 2 SWS exercise
Self-study:
* Self-study of lecture material
* Solution of exercises and assignments |
| Kreditpunkte: | 6 Credit Points = 180 h (56h in class + 124h self study), grading scheme according to exam regulations |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Acquire basic knowledge of the most important algorithms in computer graphics.Recognition of basic principles of computer graphics enables fast familiarization with new graphics packages and graphics librariesAbility to use graphical approaches for various computer science applications |
| Inhalt: | Introduction, history, application areas of Computer graphicsModeling and acquisition of graphical dataTransformationsClippingRasterization and antialiasingLightingTexturingVisibilityRay tracingModern concepts of computer graphics at a glance |
| Studien-/Prüfungsleistungen: | Exam. requirements:Successful completion of the exercisesCompleting a programming task |
| Medienformen: | Exam: Written exam 120 min.
Exam certificate (Schein): Passing the exam |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Introduction to Computer Science for Engineers</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Computer Science for Engineers</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ICSE</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr.-Ing. Christian Braune</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Christian Braune</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Tutorium</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 h (70 h contact hours + 110 h complementary reading and realization of the exercises/assignments)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 Credit Points</td>
</tr>
<tr>
<td>Grades according to the examination regulations:</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse:

Knowledge and Understanding:
- Understand the principles of object-oriented programming.
- Understand and recognize the fundamental data structures such as lists, stacks and queues, trees (binary trees, search-trees and AVL trees), hash tables and graphs.
- Understand and recognize methods to observe algorithm complexity or performance.
- Understand and recognize the basic algorithms for sorting and searching.
- Comprehend the fundamental types of algorithm design paradigm such as Divide-and-Conquer, Greedy, Backtracking and Searching, and Dynamic Programming.

Intellectual and Practical Skills:
- Distinguish the different types of data structures and algorithm design paradigm evaluate when an algorithmic design situation calls for it.
- Select appropriate algorithms for basic tasks such as searching and sorting.
- Design new algorithms or modify existing ones for new application and reason about the efficiency of the result.
- Program, test and debug computer programs in Java.

Communication and Interpersonal Skills:
- Presentation of work and ideas during the tutorials / exercises.
- Interact with a team and tutors during the tutorials.
<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to:</td>
</tr>
<tr>
<td>- imperative programming paradigm</td>
</tr>
<tr>
<td>- basic concepts of object-oriented</td>
</tr>
<tr>
<td>programming</td>
</tr>
<tr>
<td>- programming in a commonly used programming</td>
</tr>
<tr>
<td>language (e.g. Java, Python)</td>
</tr>
<tr>
<td>- generic programming</td>
</tr>
<tr>
<td>- fundamental data structures:</td>
</tr>
<tr>
<td>- trees (binary trees, search-trees and</td>
</tr>
<tr>
<td>AVL trees)</td>
</tr>
<tr>
<td>- hash tables</td>
</tr>
<tr>
<td>- graphs</td>
</tr>
<tr>
<td>- abstract data types: lists, stacks, queues</td>
</tr>
<tr>
<td>- main algorithms for fundamental tasks such</td>
</tr>
<tr>
<td>as sorting and searching</td>
</tr>
<tr>
<td>- methods to observe algorithm complexity</td>
</tr>
<tr>
<td>or performance (Big-O notation)</td>
</tr>
<tr>
<td>- fundamental types of algorithm design</td>
</tr>
<tr>
<td>paradigms: Divide-and-Conquer, Greedy,</td>
</tr>
<tr>
<td>Backtracking and Searching, and Dynamic</td>
</tr>
<tr>
<td>Programming</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites for admission: successful</td>
</tr>
<tr>
<td>completion of assignments (voting &</td>
</tr>
<tr>
<td>assessment)</td>
</tr>
<tr>
<td>Written examination, 120 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Git, live coding, MOOCs, bar camp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science - An Interdisciplinary</td>
</tr>
<tr>
<td>Approach, R. Sedgewick and K. Wayne,</td>
</tr>
<tr>
<td>Algorithms, 4th Edition, R. Sedgewick and</td>
</tr>
<tr>
<td>57351-X</td>
</tr>
<tr>
<td>Data Structures and Algorithm in Java, 6th</td>
</tr>
<tr>
<td>1-118-77133-4</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Computervisualistik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: M.Sc. DigiEng - Informatikgrundlagen für Ingenieure
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Fundamentals |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Times of presence:Weekly lectures: 2 SWS
project meetings: 2 SWS
Home work:project development in small groups (2-3)
repetition of the lecture topics
150h (56h Präsenzzeit + 94h selbstständige Arbeit Notenskala
gemäß Prüfungsordnung |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | Active participation in the lecture and successful participation in
the project |
| Empfohlene Voraussetzungen: | Programming skills, basic knowledge in image or signal
processing, basic knowledge in geometry, analysis and linear algebra. |
| Angestrebte Lernergebnisse: | Ability to decide on suitable strategies for basic computer vision
tasks
Competent use of computer vision algorithms for solving
multiple view problems
Competent use of basic strategies to solve object detection
tasks |
| Inhalt: | Feature extraction in images
Multiple view geometry for stereo vision and structure from motion
Object detection using templates
Object tracking
Introduction to image classification |
| Studien-/ Prüfungsleistungen: | Oral exam |
| Medienformen: | |
| Literatur: | |
See http://wwwisg.cs.uni-magdeburg.de/bv/
and there the lecture website
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Introduction to Deep Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Deep Learning</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>IDL</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IDL</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Sebastian Stober</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Sebastian Stober</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DKE - Methoden der Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Learning Methods & Models for Data Science
FIN: M.Sc. DKE (alt) - Bereich Methods I
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | 300h (84h contact hours + 216h self-study)
contact hours: 2 SWS lecture + 2 SWS theory exercise groups + 2 SWS practice exercise groups
self-study comprises reading assignments (flipped classroom), programming exercises and course project |
| Kreditpunkte: | 10 CP |
| Voraussetzungen nach Prüfungsordnung: |
- linear algebra and probability theory
- machine learning (e.g. "Intelligente Systeme" or "Machine Learning") |
| Empfohlene Voraussetzungen: |
- linear algebra and probability theory
- machine learning (e.g. "Intelligente Systeme" or "Machine Learning") |
| Angestrebte Lernergebnisse: |
- confidently apply DL techniques to develop a solution for a given problem
- follow recent DL publications and critically assess their contributions
- formulate hypotheses and design & conduct DL experiments to validate them |
- document progress & design decisions for reproducibility and transparency
- for Master: advanced competencies in scientific research in topics of the module

Inhalt:
- artificial neural network fundamentals (gradient descent & backpropagation, activation functions)
- network architectures (Convolutional Neural Networks, Recurrent/Recursive Neural Networks, Auto-Encoders)
- regularization techniques
- introspection & analysis techniques
- optimization techniques
- advanced training strategies (e.g. teacher-student)

Studien-/ Prüfungsleistungen:
Exam requirements: participation and active involvement in the course and the exercises (defined in the 1st lecture and published on the course website)
Final exam: written (120 minutes)
Schein: pass final exam (at least 4.0)

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Introduction to Numerical Ordinary and Partial Differential Equations and their Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Numerical Ordinary and Partial Differential Equations and their Applications</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>WR II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Juniorprofessur für Echtzeit-Computergraphik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Computer Games</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Fundamentals of Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>2 SWS lecture, 2 SWS exercise and self-study</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td></td>
<td>Grading following study and examination regulations</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
</tbody>
</table>
Empfohlene Voraussetzungen:
Linear algebra, an introduction to scientific computing (floating point numbers, numerical solution of linear systems, eigen decomposition, DFT/FFT)

Angestrebte Lernergebnisse:
The course provides an introduction to ordinary and partial differential equations and their discretization. It also considers questions such as consistency, stability and convergence with an emphasis on their practical relevance.

Inhalt:
- Introduction into ODEs
- Initial value problems, well posed problems
- Consistency, stability, convergence
- Explicit and implicit time stepping methods
- One-step and multi-step time stepping methods
- Introduction to PDEs
- Basis representations and Galerkin projection
- Spectral methods and finite elements
- Advection equation, Laplace equation, wave equations

Studien-/ Prüfungsleistungen:
Passing the exam

Medienformen:

Literatur:
- L. N. Trefethen, Exploring Ordinary Differential Equations, SIAM, 2017
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Introduction to Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Robotics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ItR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Ch. Steup</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Ch. Steup</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h</td>
</tr>
<tr>
<td></td>
<td>2h per Week Lecture = 26h</td>
</tr>
<tr>
<td></td>
<td>2h per Week Exercise = 26h</td>
</tr>
<tr>
<td></td>
<td>approx. 3h Recap and Self study of Lecture per Week ~ 40h</td>
</tr>
<tr>
<td></td>
<td>approx. 5h Preparation of Exercise Tasks~ 58h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Einführung in die Informatik</td>
</tr>
<tr>
<td></td>
<td>Intelligente Systeme</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>- Understanding the Structure of Complex Robotic Systems</td>
</tr>
<tr>
<td></td>
<td>- Building Complex Robots and Robotic Systems from Building Blocks</td>
</tr>
<tr>
<td></td>
<td>- Aspects of Robotic Systems and their Impact on Performance</td>
</tr>
<tr>
<td></td>
<td>- Developing Robotic System Software using ROS</td>
</tr>
<tr>
<td></td>
<td>- Extending Single Robot Systems to Multi-Robot Systems</td>
</tr>
<tr>
<td></td>
<td>- Developing Application-Specific Behavior using Standard Behaviors for Navigation and Path Planning</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>The lecture Introduction to Robotics will teach students the fundamental concepts of robotics from a top-down perspective, focused on mobile robots. The lecture starts with some exemplary robotic systems to show the variety of system in action today. Afterwards, multiple views on robotics systems are shown, which highlight different aspects like communication,</td>
</tr>
</tbody>
</table>
behavior, movement, and system setup. The lecture continues with a description of multiple communication paradigms typically used in the robotic context and their relation to physical communication mechanisms. The next topic highlights some components typically found for perception and actuation like cameras, LiDARs, Distance Sensors, linear and revolute motors and piezo actuators. Afterwards, mechanisms to combine perception and actuation using low-level control mechanisms are shown. The shown mechanisms are reactive behaviors based on rule-sets and state-machines and feed-back-based control. Additionally, some kinematic models for movement of robots are highlighted like differential drive, Ackerman steering and holonomic movement. The next part of the lecture focus on localization of mobile robots using external mechanisms like Triangulation and Trilateration and internal mechanisms like SLAM and landmark tracking. The last two parts of the lecture discuss algorithms for path- and trajectory planning, and the extension to multi-robot systems. The exercises to the lecture will highlight the concepts of the lecture with practical examples based on robotic simulations in ROS with the Gazebo simulator.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Oral Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Introduction to Simulation</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Simulation</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>ItS</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Graham Horton</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Anwendungsfach - Computerspiele</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Computer Games</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Fundamentals of Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 Stunden (56 h Präsenzzeit + 94 h selbständiges Arbeiten)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik I - III</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Fähigkeit zur Durchführung eines semesterlangen Projektes, unter Anwendung von Grundlagen der Simulation, ereignisorientierter Modellierung und Programmierung, abstrakter Modellierung und Anwendungen der Informatik in anderen Fachgebieten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>ereignisorientierte Simulation</td>
</tr>
<tr>
<td></td>
<td>Zufallsvariablen</td>
</tr>
<tr>
<td></td>
<td>Zufallszahlenerzeugung</td>
</tr>
<tr>
<td></td>
<td>statistische Datenanalyse</td>
</tr>
<tr>
<td></td>
<td>gewöhnliche Differentialgleichungen</td>
</tr>
<tr>
<td></td>
<td>numerische Integration</td>
</tr>
<tr>
<td></td>
<td>stochastische Petri-Netze</td>
</tr>
<tr>
<td></td>
<td>AnyLogic Simulationssystem</td>
</tr>
<tr>
<td></td>
<td>zeitdiskrete Markov Ketten</td>
</tr>
<tr>
<td></td>
<td>agentenbasierte Simulation</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Benotet: Klausur, 120 min</td>
</tr>
<tr>
<td></td>
<td>Unbenotet: bestehen der Klausur, 120 min</td>
</tr>
</tbody>
</table>

Seite 359 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
</table>
| Literatur: | Banks, Carson, Nelson, Nicol: Discrete-Event System Simulation
<p>| | Siehe www.sim.ovgu.de |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Introduction to Software Engineering for Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Software Engineering for Engineers</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ISEE</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr.-Ing. Christian Braune</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Christian Braune</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>2 SWS lecture (28h)</td>
</tr>
<tr>
<td></td>
<td>2 SWS exercise (28h)</td>
</tr>
<tr>
<td></td>
<td>plus 94h complementary reading, preparation and project work</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Knowledge and Understanding:</td>
</tr>
<tr>
<td></td>
<td>Understand the principles of software engineering.</td>
</tr>
<tr>
<td></td>
<td>Understand the principles of requirement engineering</td>
</tr>
<tr>
<td></td>
<td>Understand the principles of an UML model to represent</td>
</tr>
<tr>
<td></td>
<td>structural and behavioural aspects of a software system.</td>
</tr>
<tr>
<td></td>
<td>Understand and recognize common design principles.</td>
</tr>
<tr>
<td></td>
<td>Understand and recognize testing strategies for a software</td>
</tr>
<tr>
<td></td>
<td>system.</td>
</tr>
<tr>
<td></td>
<td>Intellectual and Practical Skills:</td>
</tr>
<tr>
<td></td>
<td>Capture, document and analyse requirements.</td>
</tr>
<tr>
<td></td>
<td>Translate a requirements specification into an implementable</td>
</tr>
<tr>
<td></td>
<td>design, following a structured and organised process.</td>
</tr>
<tr>
<td></td>
<td>Design UML models to represent structural and behavioural as-</td>
</tr>
<tr>
<td></td>
<td>pcts of a software system.</td>
</tr>
<tr>
<td></td>
<td>Design system architectures that meet the system specification.</td>
</tr>
<tr>
<td></td>
<td>Apply testing techniques to check that a software system</td>
</tr>
<tr>
<td></td>
<td>correctly works, i.e. meets its specification.</td>
</tr>
<tr>
<td></td>
<td>Communication and Interpersonal Skills:</td>
</tr>
<tr>
<td></td>
<td>Group working skills including general organization, planning,</td>
</tr>
<tr>
<td></td>
<td>time management and presentation of work.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Introduction to:</td>
</tr>
<tr>
<td></td>
<td>Software Engineering Principles</td>
</tr>
<tr>
<td>Requirements Engineering</td>
<td>Unified Modelling Language (UML)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Analysis and Design Process</td>
<td></td>
</tr>
<tr>
<td>Design Principles</td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
</tr>
</tbody>
</table>

Studien-/ Prüfungsleistungen:

- written exam 120min
- to be admitted to the exam, participation in the exercises is necessary. Details will be published in the first lecture.

Medienformen:

- Literatur: will be published on the course's website
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>IT-Forensik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>IT-Forensics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IFOR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik, Multimedia and Security</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Jana Dittmann, FIN-ITI</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>4 SWS = 150h = 56h Präsenzzeit + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundlagen Algorithmen und Datenstrukturen, Grundlagen der theoretischen Informatik, Grundlagen der technischen Informatik, Modul "Sichere Systeme"</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>• Fähigkeit IT-forensische Untersuchungen anhand eines datenzentrischen Vorgehensmodells an einem vereinfachten Beispiel zu organisieren, durchzuführen, dokumentieren und zu moderieren</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit IT-forensische Methoden anzupassen, zu adaptieren und weiterzuentwickeln</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>• Grundlagen IT-forensischer Untersuchungen: datenzentrisches Vorgehensmodell mit Informationen, Daten und Phasen für IT-forensischen Untersuchungen, Anwendung an ausgewählten Beispielen</td>
</tr>
<tr>
<td></td>
<td>• Sicherheitsziele, Designanforderungen und ausgewählte rechtliche Aspekte in der IT-Forensik</td>
</tr>
<tr>
<td></td>
<td>• Ausgewählte Beispiele zur Beweismittelsuche und Erhebung sowie Auswertung gemäß Best Practices</td>
</tr>
<tr>
<td></td>
<td>• Grundlagen zur Aufbereitung, Dokumentation und Präsentation von Untersuchungsergebnissen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Prüfungsform: Referat (Präsentation und Abschlussbericht)</td>
</tr>
</tbody>
</table>

Seite 363 Inhaltsverzeichnis
Medienformen: |
Literatur: siehe: https://omen.cs.uni-magdeburg.de/itiams/lehre/
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>IT-Projektmanagement (dual) (SPO bis 9/2023)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>IT Project Management (dual)</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>IT-PM</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Pflichtfächer
FIN: B.Sc. INF - Pflichtfächer
FIN: B.Sc. INGINF - Pflichtfächer
FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeit:
14h Vorlesung/14h Übung
Selbständiges Arbeiten:
62h Vor- und Nachbereitung der Vorlesung und Übung
Vorlesung 1 SWS = 14h Präsenzzeit + 31h selbständige Arbeit
Übung 1 SWS = 14h Präsenzzeit + 31h selbstständige Arbeit |
| Kreditpunkte: | 3 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Techniken des Projektmanagements
Praktischer Umgang mit Methoden des Projektmanagements
Fähigkeit die erlernten Konzepte / Methoden des Projektmanagements beim Praxispartner einzusetzen und situativ anpassen zu können |
Projektplanung: Budgetierung, Ablaufplanung, Terminmanagement, Kapazitätsplanung, Analyse kritischer Pfade
Projektesteuerung: Fortschrittskontrolle, Budgetüberwachung, Dokumentation und Berichtswesen
Projektabschluss: Projektabnahme, Erkenntnissicherung, Projektliquidation |
<table>
<thead>
<tr>
<th>Projektunterstützende Maßnahmen: Projektmanagementwerkzeuge, Kreativitäts- und Arbeitstechniken, Konfigurationsmanagement, Agiles Projektmanagement, SCRUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen: Schriftliche Prüfung, 120 MinSchein Referat in Kooperation mit dem Praxispartner, weitere Vorleistungen entsprechend Angabe zum Semesterbeginn</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Pflichtfächer
FIN: B.Sc. INF - Pflichtfächer
FIN: B.Sc. INGINF - Pflichtfächer
FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen WPF KWL
B, WI 1.2
WI 2.1
WI 2.2 |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeit:
14h Vorlesung/14h Übung
Selbständiges Arbeiten:
62h Vor- und Nachbereitung der Vorlesung und Übung
Vorlesung 1 SWS = 14h Präsenzzeit + 31h selbständige Arbeit
Übung 1 SWS = 14h Präsenzzeit + 31h selbständige Arbeit |
| Kreditpunkte: | 3 |
| Angestrebte Lernergebnisse: | Techniken des Projektmanagements
Praktischer Umgang mit Methoden des Projektmanagements |
Projektplanung: Budgetierung, Ablaufplanung, Terminmanagement, Kapazitätsplanung, Analyse kritischer Pfade
Projektsteuerung: Fortschrittskontrolle, Budgetüberwachung, Dokumentation und Berichtswesen
Projektabschluss: Projektabnahme, Erkenntnissicherung, Projektliquidation
Projektunterstützende Maßnahmen: Projektmanagementwerkzeuge, Kreativitäts- und Arbeitstechniken, Konfigurationsmanagement
Agiles Projektmanagement, SCRUM |
| Studien-/ Prüfungsleistungen: | Schriftliche Prüfung, 120 Min
| | Schein
<p>| | Vorleistungen entsprechend Angabe zum Semesterbeginn |
| Literatur: |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>IT-Security of Cyber-Physical Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>IT-Security of Cyber-Physical Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>ITS-CPS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Methods II
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Projekt |
| Arbeitsaufwand: | Projektvorlesung zu ausgewählten technischen Themen der IT Sicherheit; Vergabe eines anspruchsvollen Themas zu selbständigen Bearbeitung und Lösung einer gestellten Aufgabe
4 SWS = 2V + 2Ü (Labor)
Arbeitsaufwand: 180h (56 h Präsenzzeit + 124 h selbstständige Arbeit) |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Sichere Systeme, Algorithmen und Datenstrukturen, Grundlagen der Technischen Informatik |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Der/die Studierende soll innerhalb der Lehrveranstaltung Kenntnisse zu aktuellen, ausgewählten technischen Themen der IT-Sicherheit erlernen und erfahren. Dabei soll ein anspruchsvolles Thema selbständig theoretisch und praktisch bearbeitet und präsentiert werden.
Der Fokus bei den Themen liegt dabei auf hardwarenahen Fragestellungen, z.B. zu IoT Security, automotiver IT-Sicherheit oder Sicherheitsbetrachtungen für industrielle Steuerungs- und Regelungssysteme |
| Inhalt: | Aktuelle Herausforderungen und Lösungen der IT Sicherheit zu ausgewählten technischen Themen wie zum Beispiel aus:
System-, Netzwerk- und Anwendungssicherheit
Sicherheit von Bussystemen |
| Studien- / Prüfungsleistungen: | Spezifikation und formale Verifikation sicherer Systeme
Design und Realisierung hardwarenaher Sicherheitslösungen |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung: Referat (Präsentation und Abschlussbericht)</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Knowledge Engineering and Digital Humanities</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Knowledge Engineering and Digital Humanities</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 3./ 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ernesto De Luca</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ernesto De Luca</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Hours of course attendance; 2 SWS lecture</td>
</tr>
<tr>
<td></td>
<td>2 SWS exercises</td>
</tr>
<tr>
<td></td>
<td>Hours of self study: 124 h self study</td>
</tr>
<tr>
<td></td>
<td>180 h = 56 h course attendance + 124 h self study</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Machine Learning</td>
</tr>
<tr>
<td></td>
<td>Information Retrieval</td>
</tr>
<tr>
<td></td>
<td>Data Science</td>
</tr>
<tr>
<td></td>
<td>Data Mining</td>
</tr>
<tr>
<td></td>
<td>Fundamentals of Natural Language Processing</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>planning and development of digital infrastructures</td>
</tr>
<tr>
<td></td>
<td>interdisciplinary work in big teams</td>
</tr>
<tr>
<td></td>
<td>visualisation of Big Data</td>
</tr>
<tr>
<td></td>
<td>Digital Humanities project planning</td>
</tr>
</tbody>
</table>

Seite 371 Inhaltsverzeichnis
Inhalt:

At the beginning, only a few people could access information in a digital way. Nowadays hundreds of millions of people use information systems every day when they use a web shop, a search engine or manage their e-mails. At the moment information discovery plays an important role for managing data collections, processing and identifying relevant data, and supporting users analysing their personal interests (e.g. context, language, semantics, etc.). Data Engineering principles are important for representing, presenting and understanding data that is generated by different systems. Knowledge Engineering refers to all aspects involved in building, maintaining and using knowledge-based systems to turn passive data into exploitable knowledge. In this course the fundamentals of Data and Knowledge Engineering will be presented. The information system architecture will be explained within all its components and related application areas will be discussed. The basic concepts and more advanced techniques for natural language processing, information filtering and decision support will be shown. Furthermore, in-depth knowledge and competences in Data Science / Data Mining will be given. All the methods and techniques can be applied in Digital Humanities. This is an interdisciplinary environment, where researchers can work together. It is based on different research fields, e.g. quantitative text analysis, information retrieval, text mining, subject-specific databases, corpus linguistics, visualization of complex data structures and provides user-oriented / user-centred representations of the data that can then be further analysed hermeneutically in the humanities. At the end of the course, the students are provided within a rich and comprehensive catalogue of tools and techniques and can develop and understand information systems applying their knowledge for Data and Knowledge Engineering. They can also use machine learning techniques that can be applied for different purposes, especially for digital humanities.

Studien-/ Prüfungsleistungen:

Prerequisite for exam will be announced at beginning of semester.
Exam: written examination

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Kognitive Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Cognitive Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 3./ 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. rer. nat. Andreas Wendemuth (FEIT-IESK)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. rer. nat. Andreas Wendemuth (FEIT-IESK)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit: 3 SWS Seminar Selbständiges Arbeiten: Lösung der Praktikumsaufgaben, Vorbereiten des Referats 120 h (42 h Präsenzzeit + 78 h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der Teilnehmer versteht die Prinzipien kognitiver Intelligenz und ihrer Übertragung in Computerprogramme. Er kann solche Programme praktisch anwenden.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>praktische Anwendung kognitiver intelligenter Systeme und deren Konzeption und Organisationsform praktisch getestete Theorien und künstliche Repräsentanten menschlicher Kognition Modellbildung in akustischer und verschriebener Sprache als höchstes Repräsentationsmodell Umsetzung in ingenieurtechnischen Systemen Aspekte der Bedeutungszuweisung und der Datenhandhabung in kognitiven Systemen</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Referat</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Kommunikationstechnik für Digital Engineering</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Kommunikationstechnik für Digital Engineering</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Kommunikationstechnik für Digital Engineering</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Omar, FEIT-IESK</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Omar, FEIT-IESK</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>6 SWS Wöchentliche Vorlesungen und Übungen</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten</td>
</tr>
<tr>
<td></td>
<td>240 h (84 h Präsenzzeit + 156 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Mathematik, Physik, Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Literaturangaben: siehe Script</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Einführung in die Kommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Konzepte Information, informationstragende Signale,</td>
</tr>
<tr>
<td></td>
<td>Modulation, Rauschen, Übertragungskanäle, Kanalkapazität</td>
</tr>
<tr>
<td></td>
<td>sowie Quellen- und Kanalcodierung</td>
</tr>
<tr>
<td></td>
<td>Entwicklung mathematischer Modelle für die Behandlung der</td>
</tr>
<tr>
<td></td>
<td>o.g. Konzepte</td>
</tr>
<tr>
<td></td>
<td>Beschreibung und quantitative Behandlung von</td>
</tr>
<tr>
<td></td>
<td>Informationsübertragungssystemen</td>
</tr>
<tr>
<td></td>
<td>ingenieurwissenschaftlicher Entscheidungsbasen für den</td>
</tr>
<tr>
<td></td>
<td>Entwurf von Informationsübertragungssystemen</td>
</tr>
<tr>
<td></td>
<td>Informations- und Codierungstheorie</td>
</tr>
<tr>
<td></td>
<td>informationstheoretische Konzepte Informationsgehalt,</td>
</tr>
<tr>
<td></td>
<td>Entropie, Redundanz, Quellencodierung, Kanalkapazität,</td>
</tr>
<tr>
<td></td>
<td>Kanalcodierung, Hamming-Raum und Hamming-Distanz.</td>
</tr>
<tr>
<td></td>
<td>mathematische Modelle für die o.g. Konzepte.</td>
</tr>
<tr>
<td></td>
<td>Verfahren für die Quellen- und Kanalcodierung.</td>
</tr>
<tr>
<td></td>
<td>Behandlung ausgewählter Fehlerkorrigierender</td>
</tr>
<tr>
<td></td>
<td>Decodierungsverfahren</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in die Kommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Mathematische Darstellung der Signale als Informationsträger</td>
</tr>
<tr>
<td></td>
<td>im Zeit- und Frequenzbereich (Fourier-Reihe und Fourier-</td>
</tr>
<tr>
<td></td>
<td>Transformation)</td>
</tr>
<tr>
<td></td>
<td>Die Abtasttheorie und die Digitalisierung der Signale</td>
</tr>
<tr>
<td></td>
<td>Quellencodierung und Datenkompression</td>
</tr>
<tr>
<td></td>
<td>Mathematische Beschreibung des Rauschens</td>
</tr>
</tbody>
</table>

Seite 374 Inhaltsverzeichnis
Rauschverhalten der Übertragungskanäle; Berechnung der Bitfehlerrate
Behandlung ausgewählter digitaler Übertragungssysteme im Basisband (PCM, DPCM,)
Behandlung ausgewählter digitaler Übertragungssysteme im Passband (ASK, PSK, FSK, QAM,)
Informations- und Codierungstheorie
Informationsgehalt und Entropie diskreter Informationsquellen. Redundanz, Gedächtnis und Quellencodierung (Shannon-Fano- und Huffmann-Verfahren).
Kontinuierliche Quellen. Diskrete und kontinuierliche Kanäle, Kanalentropien und Kanalkapazität
Kanalcodierung und Hamming-Raum
Lineare Blockcodes
Zyklische Codes
Syndromdecodierung

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborrotation in Neurobiologischer Lernforschung</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Lab Rotation in neurobiological learning research</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>LR NL</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 6. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. André Brechmann, LIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. André Brechmann, LIN</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Medizintechnik
FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 60 h Projekt
Vor- und Nachbearbeitung des Projektes
90h = 60h Präsenzzeit + 30h selbständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Teilnahme am Seminar „Experimentelle Ansätze in der neurobiologischen Lernforschung“</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Lernziele & zu erwerbende Kompetenzen:
Praktische Erfahrung über Ansätze der neurobiologischen Forschung am Menschen oder Tieren, u.a. zu den Themen Reinnforcementlernen, Sequenzlernen, Kategorielernen, Kurzzeitgedächtnisprozesse</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Im Rahmen laufender Forschungsprojekte am Leibniz-Institut wird an der Ausarbeitung und Durchführung von neurobiologischen Lernexperimenten mittels fMRI, MEG, EEG und Elektrophysiologie gearbeitet. Schwerpunkt bei der Datenauswertung ist die Zeitreihenanalyse neuronaler- und Verhaltensdaten</td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Prüfung: Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe https://iwebdav.ifn-magdeburg.de/iwebdav/LearningAndMemorySeminar/</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Learning Generative Models</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Learning Generative Models</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>LGM</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 6. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FIN: Lehrstuhl Praktische Informatik / Artificial Intelligence</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>FIN: Prof. Dr.-Ing. Sebastian Stober</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Computer Games</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit = 56 Stunden:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Bachelor: Selbstständige Arbeit = 94 Stunden:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung von Vorlesung (flipped Classroom) und Übung,</td>
</tr>
<tr>
<td></td>
<td>Bearbeiten von Übungsaufgaben, Kursprojekt</td>
</tr>
<tr>
<td></td>
<td>Master: Selbstständige Arbeit = 124 Stunden:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung von Vorlesung (flipped Classroom) und Übung,</td>
</tr>
<tr>
<td></td>
<td>Bearbeiten von Übungsaufgaben, Kursprojekt, zusätzliche Projektarbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5</td>
</tr>
<tr>
<td></td>
<td>Master: 6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Introduction to Deep Learning</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse: | confidently apply generative models to develop a solution for a given problem
| | follow recent publications on generative models and critically assess their contributions
| | formulate hypotheses and design & conduct experiments with generative models to validate them
| | document progress & design decisions for reproducibility and transparency |
| Inhalt: | Trainingsmethoden & Architekturen für generative Modelle, insbesondere Restricted und Deep Boltzmann Machines (RBMs bzw. DBMs), Deep Belief Nets (DBNs), Autoregressive Modelle, Variational Learning und Generative Adversarial Nets (GANs) |
| Studien-/ Prüfungsleistungen: | Prüfung in mündlicher Form
| | Ankündigung der notwendigen Vorleistungen in der ersten Veranstaltungswoche und auf der Vorlesungswebseite
| | Schein (mündlich),
<p>| | Ankündigung der notwendigen Vorleistungen in der ersten Veranstaltungswoche und auf der Vorlesungswebseite |
| Medienformen: | |
| | Zusätzliche weiterführende Literatur wird auf der Vorlesungswebseite bekanntgegeben. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Lindenmayer-Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Lindenmayer-Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>L-Systeme</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Bernd Reichel</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Bernd Reichel</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 15 x 4h = 60h</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Nachbereiten der Vorlesung: 90h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorlesung: Grundlagen der Theoretischen Informatik I</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Kenntnisse wichtiger Klassen von L-Systemen,</td>
</tr>
<tr>
<td></td>
<td>Fähigkeiten zur sinnvollen Anwendung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Definitionen verschiedener Varianten von L-Systemen;</td>
</tr>
<tr>
<td></td>
<td>Theoretische Ergebnisse zu Erzeugungsmächtigkeiten,</td>
</tr>
<tr>
<td></td>
<td>Komplexitätsbetrachtungen, Wachstumsfunktionen u.a.;</td>
</tr>
<tr>
<td></td>
<td>Anwendungen in der Computergraphik (Erzeugung von Frakalen, Modellierung von Pflanzen)</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Mündliche Prüfung im Umfang von 30 Minuten,</td>
</tr>
<tr>
<td></td>
<td>für Schein: Gespräch im Umfang von 30 Minuten,</td>
</tr>
<tr>
<td></td>
<td>keine Zulassungsvoraussetzung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Grzegorz Rozenberg, Arto Salomaa:</td>
</tr>
<tr>
<td></td>
<td>The Mathematical Theory of L Systems. Academic Press,</td>
</tr>
<tr>
<td></td>
<td>Przemyslaw Prusinkiewicz, Aristid Lindenmayer:</td>
</tr>
<tr>
<td></td>
<td>The Algorithmic Beauty of Plants. Springer-Verlag,</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Liquid Democracy - "Digitalisierung der Politik - Politik der Digitalisierung"</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Liquid Democracy - "Digitization of Politics - Politics of Digitization"</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>LiquiD</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr.-Ing. Eike Schallehn</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Eike Schallehn, Dr.rer. pol. Frank Lesske</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Seminar |
| Arbeitsaufwand: | Präsenzzeiten:
4 SWS wöchentliche Vorlesung / Seminar / Projektplanung
Selbstständiges Arbeiten:
Nacharbeiten der Vorlesung
Vorbereiten von Seminarvorträgen
Schriftliche Ausarbeitung der Hausarbeit
5 Credit Points = 150 h (2*28h Präsenzzeit + 94h selbstständige Arbeit)
6 Credit Points = 180 h (2*28h Präsenzzeit + 124h selbstständige Arbeit) |
| Kreditpunkte: | 5 oder 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Grundverständnis aktueller Konzepte der partizipatorischen und deliberativen Demokrate
Anwendungsbereite Kenntnisse zu Einsatzfeldern und Möglichkeiten von Informationssystemen in demokratischen Prozessen
Beherrschung von konkreten Informationssystemen zur Unterstützung demokratischer Prozesse |
| Inhalt: | Grundlagen des Demokratiebegriffs: repräsentative vs. Direkte Demokratie |

Seite 380 Inhaltsverzeichnis
| Aktuelle Konzepte der partizipatorischen Demokratie: Liquid Democracy, Proxy-/Delegated Voting, etc.
Konzepte der gemeinschaftlichen/gesellschaftlichen Willensbildung und Entscheidungsfindung
Unterstützung durch Informationssysteme wie LiquidFeedback, Adhocracy, etc.
Studien-/Prüfungsleistungen: Referat und Hausarbeit
Medienformen:
Literatur: Aktuelle Literaturangaben in der Vorlesung |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Logic for knowledge representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Logic for knowledge representation</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Logic for knowledge representation</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>KR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Till Mossakowski</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Till Mossakowski</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung + Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Vor- und Nachbearbeitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Entwicklung von Lösungen für die Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung für die Abschlussprüfung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Logik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Knowledge of different formalisms for knowledge representation</td>
</tr>
<tr>
<td></td>
<td>Ability to choose a formalism for a given problem at hand</td>
</tr>
<tr>
<td></td>
<td>Ability to formalise knowledge in a suitable formalism</td>
</tr>
<tr>
<td></td>
<td>Understanding of representation and reasoning capabilities of the different formalisms</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Horn Logics and Datalog</td>
</tr>
<tr>
<td></td>
<td>Description Logics and Knowledge graphs</td>
</tr>
<tr>
<td></td>
<td>Nonmonotonic Reasoning</td>
</tr>
<tr>
<td></td>
<td>Inconsistency Handling</td>
</tr>
</tbody>
</table>

Seite 382 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Argumentation</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorleistung: regelmäßige</td>
<td>Teilnahme an Vorlesung undÜbung,</td>
</tr>
<tr>
<td>erfolgreiche Bearbeitung der</td>
<td>erfolgreiche Bearbeitung der</td>
</tr>
<tr>
<td>Übungsaufgaben</td>
<td>Übungsaufgaben</td>
</tr>
<tr>
<td>Prüfungsform: mündlich</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Franz Baader, Ian Horrocks,Carsten</td>
<td>Lutz, Uli Sattler. An Introduction</td>
</tr>
<tr>
<td>Lutz, Uli Sattler. An Introduction</td>
<td>to Description Logic, Cambridge</td>
</tr>
<tr>
<td>Frank van Harmelen, Vladimir</td>
<td>Lifschitz and Bruce Porter (Eds).</td>
</tr>
<tr>
<td>Pascal Hitzler, Markus Kroetsch,</td>
<td>and Sebastian Rudolph. Foundations</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Logik</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Logic</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>Logik</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Theoretische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Till Mossakowski</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Pflichtfächer</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzeiten: 14 X 4h = 56 h</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Nachbereiten der Vorlesung: 64 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>die für Logik relevanten Begriffe und deren Definitionen erklären können,</td>
</tr>
<tr>
<td></td>
<td>logische Syntax verstehen,</td>
</tr>
<tr>
<td></td>
<td>logische Formeln und Argumente lesen können,</td>
</tr>
<tr>
<td></td>
<td>Situationen durch logische Formeln beschreiben können,</td>
</tr>
<tr>
<td></td>
<td>logische Formeln ins Deutsche übersetzen und umgekehrt,</td>
</tr>
<tr>
<td></td>
<td>Normalformen erkennen und herstellen können,</td>
</tr>
<tr>
<td></td>
<td>Situation als modelltheoretische Struktur aufschreiben können,</td>
</tr>
<tr>
<td></td>
<td>zwischen formaler Repräsentation und der Bedeutung (reale Welt/Anwendung) unterscheiden können,</td>
</tr>
<tr>
<td></td>
<td>Argumente auf logische Folgerungen überprüfen können,</td>
</tr>
<tr>
<td></td>
<td>Beweise nach vorgegebenen Schema und auch selbstständig konstruieren können,</td>
</tr>
<tr>
<td></td>
<td>Algorithmen zur Auswertung und Umformung logischer Ausdrücke und Argumente anwenden können</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Anwendungsfelder für Logik in der Informatik,</td>
</tr>
<tr>
<td></td>
<td>Logische Syntax (Formelbegriff und Argumentbegriff für Aussagenlogik und Prädikatenlogik),</td>
</tr>
<tr>
<td></td>
<td>formale Repräsentation von Wissen,</td>
</tr>
</tbody>
</table>
| | Logische Semantik von zwei- und dreiwertiger Aussagenlogik sowie Prädikatenlogik,
<table>
<thead>
<tr>
<th>Domänenspezifische Sprachen und Abstraktion zu allgemeinen logischen Sprachen, Folgerungsbegriff und logische Folgerung, Regelsysteme (u.a. für Formeln und Beweise), grundlegende Algorithmen für logische Probleme (SAT-Solving, Hornformel-Algorithmus, Überführung in Normalformen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Zulassungsvoraussetzung:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Logistikprozessanalyse
engl. Modulbezeichnung: Logistikprozessanalyse
ggf. Modulniveau: Logistikprozessanalyse
Kürzel: L3
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 3. Semester
Semesterlage: Wintersemester
Modulverantwortliche(r): Professur für Logistik
Dozent(in): Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Michael Schenk, Dr.-Ing. Elke Glistau
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Maschinenbau Spezialisierung Logistik
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand:
Präsenzzeiten: Wöchentliche Vorlesung 2 SWS
14 tgl. Übung 1 SWS
Selbstständiges Arbeiten:
Übungsaufgaben und Prüfungsvorbereitung
Belegbearbeitung
150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit)
Kreditpunkte: 5
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Module L1, L2 (Technische Logistik)
Angestrebte Lernergebnisse:
Lernziele & zu erwerbende Kompetenzen:
Als Controller und Berater liegt der Ausbildungsschwerpunkt des Moduls L3 darauf, auf der einen Seite Fehler und Schwachstellen in logistischen Prozessen und Systemen zu identifizieren und nachzuweisen und auf der anderen Seite Potenziale und Trends zu erkennen, um daraus nachfolgend geeignete Verbesserungsmaßnahmen im strategischen, taktischen und operativen Bereich abzuleiten, sie zu realisieren und ihre Wirksamkeit zu kontrollieren.
Inhalt:
Ausgangspunkt bildet die Datenerhebung. Hierbei wird generell darauf fokussiert den Aufwand zu minimieren, dabei gleichzeitig aber die Aktualität und Repräsentanz des Datenmaterials zu sichern. In Präsenzeranstaltungen wird das methodische Vorgehen zur Durchführung von güterbezogenen, von ressourcenbezogenen und von Fließsystemanalysen erläutert. An Beispielaufgaben werden die Berechnung grundlegender statistischer Kenngrößen und Kennzahlen sowie deren Interpretation trainiert. Hierbei werden auch analytische Methoden des Qualitätsmanagements speziell zur Visualisierung und Interpretation (von Strichlisten bis zu Ishikawa-

Studien-/Prüfungsleistungen:
- Nachweis der Teilnahme an den Übungen;
- Qualität der bearbeiteten Belegaufgabe
- Schriftliche Prüfung am Ende des Moduls

Medienformen:

Literatur:
Vorlesungsskripte im passwortgeschützten Downloadbereich
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mainframe Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Mainframe Computing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Institut für Simulation und Graphik, AG Lehramt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Volkmar Hinz</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung, 2 SWS Übung
Selbstständiges Arbeiten:
Übungsaufgaben, Programmierbeleg
150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Programmierkenntnisse C/C++, JAVA |
| Angestrebte Lernergebnisse: | Grundverständnis zu Großrechnersystemen, insbesondere IBM „System z“
Einblick in die Bedienung von IBM Großrechnersystemen unter den Betriebssystemen z/VM und z/OS
Grundkenntnisse in der Programmiersprache COBOL und in der Scriptsprache REXX
Befähigung zur Entwicklung von einfachen Anwendungen |
| Inhalt: | Der Begriff „Mainframe“
Geschichte der IBM Mainframe Architektur
Das IBM „System z“
Emulationen des Systems z für Entwickler
Betriebssysteme z/VM und z/OS sowie Linux
Programmierung (Einführung in Cobol und REXX)
Anwendungsprogrammierung |
| Studien-/ Prüfsungsleistungen: | Prüfungsvoraussetzungen: s. Vorlesung
Prüfung: mündlich |
| Medienformen: | |
| Literatur: | http://lehramt.cs.uni-magdeburg.de/Skripte/Pra/indexibm
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Management of Global Large IT-Systems in International Companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Management of Global Large IT-Systems in International Companies</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MGLIIC</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Horstfried Läpple, Dipl. Math. Karl-Albert Bebber</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten (Blockveranstaltungen): Vorlesungen Übungen Selbstständiges Arbeiten: Selbständiges bearbeiten der Übungsaufgaben Nachbereitung der Vorlesungen, - Prüfungsvorbereitung 180h (56h Präsenzzeit + 124h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Knowledge about IT-Systems and Business administration</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>To gain a comprehensive understanding about to develop, to implement, to operate and to phase-out of large-scale IT-Systems in international companies</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>IT relevant characteristics of International Companies Organizational Structures in International Companies Critical Design decisions for IT Landscapes Hybrid IT Landscapes: DBMS and flat files Differences business and research IT Global vs. Local: Processes, Settings, Data, Landscapes</td>
</tr>
<tr>
<td>Global, regional, local systems considering user’s and customer’s view</td>
<td></td>
</tr>
<tr>
<td>Running a System Landscape: Support Processes, Costs and Changes Management</td>
<td></td>
</tr>
<tr>
<td>Risk Management (Projects, IT Departments)</td>
<td></td>
</tr>
<tr>
<td>Auditing of IT Systems and IT Projects</td>
<td></td>
</tr>
<tr>
<td>International Project Management / Global Collaboration</td>
<td></td>
</tr>
</tbody>
</table>

| Studien-/ Prüfungsleistungen: |
| Prüfungsvoraussetzungen: Anmeldung und Teilnahme an den Vorlesungen und Übungen |
| Prüfung: schriftlich |

<p>| Medienformen: |
| Literatur: |
| Listings |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Marketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Marketing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 6. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Marketing</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Marketing</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>5 x30h (42 h Präsenzzeit + 108 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse:

Lernziele & zu erwerbende Kompetenzen:
- Erlangen grundlegende Kenntnisse der Funktion von Marketing in Unternehmen und der Analyse von Märkten,
- Lernen die Instrumente des Marketing kennen,
- Entwickeln Fähigkeiten zur der Erstellung eines Marketingplans und zur Lösung von Problemstellungen des Marketing unter Anwendung geeigneter Methoden.

Inhalt:
- Das Marketing-Konzept
- Marktstrukturen und Käuferverhalten
- Marketing-Planung und Marketing-Mix-Entscheidungen
- Marktforschung
- Marketing-Organisation.

Studien-/Prüfungsleistungen:
Klausur (60 Minuten)

Medienformen:

Literatur:
Modulbezeichnung:
Maschinelles Lernen

engl. Modulbezeichnung:
Machine Learning

ggf. Modulniveau:

Kürzel:
ML

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester:
B.Sc. ab 3. Semester; M.Sc. ab 1. Semester

Semesterlage:
Wintersemester

Modulverantwortliche(r):
Professur für Data and Knowledge Engineering

Dozent(in):
Prof. Dr.-Ing. Andreas Nürnberger

Sprache:
englisch

Zuordnung zum Curriculum:
FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - Computer Games
FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik
FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing
FIN: B.Sc. INGINF - WPF Technische Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Fundamentals of Data Science
FIN: M.Sc. DKE (alt) - Bereich Fundamentals

Lehrform / SWS:
Vorlesung; Übung

Arbeitsaufwand:

- Präsenzzeiten:
 wöchtl. Vorlesung: 2 SWS / wöchtl. Übung: 2 SWS

- Selbstständiges Arbeiten:
 Bearbeitung von Übungsaufgaben; Nachbereitung der Vorlesung, Vorbereitung auf die Prüfung150h = 4 SWS = 56h Präsenzeit + 94h selbstständige Arbeit

Kreditpunkte:
5

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:
Teilnahmeveraussetzungen: „Algorithmen und Datenstrukturen“

Angestrebte Lernergebnisse:
Einführung in das Funktionslernen; Einführung in die Konzepträume und Konzeptlernen; Algorithmen des Instanzbasiertes Lernens und Clusteranalyse; Algorithmen zum Aufbau der Entscheidungsbäume; Bayesches Lernen; Neuronale Netze; Assoziations-analyse; Verstärkungslernen; Hypothesen Evaluierung.

Inhalt:
Einführung in das Funktionslernen; Einführung in die Konzepträume und Konzeptlernen; Algorithmen des Instanzbasiertes Lernens und Clusteranalyse; Algorithmen zum Aufbau der Entscheidungsbäume; Bayesches Lernen; Neuronale Netze;
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Powerpoint, Tafel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
<td>Masterarbeit</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Master Thesis</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 3./ 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Hochschullehrer der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Hochschullehrer der FIN</td>
</tr>
<tr>
<td>Sprache:</td>
<td>---</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV
FIN: M.Sc. DIGIENG
FIN: M.Sc. DKE
FIN: M.Sc. INF
FIN: M.Sc. INGINF
FIN: M.Sc. VC
FIN: M.Sc. WIF |
| Lehrform / SWS: | Masterarbeit, Kolloquium |
| Arbeitsaufwand: | 20 Wochen
eigenständige Erstellung einer wissenschaftlichen Arbeit + Kolloquium |
| Kreditpunkte: | 30 |
| Voraussetzungen nach Prüfungsordnung: | Nachweis von 120 CP aus den Schwerpunktbereichen |
| Empfohlene Voraussetzungen: | |
| Inhalt: | Das Thema der Masterarbeit kann aus aktuellen Forschungsvorhaben der Institute oder aus betrieblichen Problemstellungen mit wissenschaftlichem Charakter abgeleitet werden. Ausgegeben wird die Aufgabenstellung immer von einem Hochschullehrer der Fakultät für Informatik. Im Kolloquium haben die Studierenden nachzuweisen, dass sie in der Lage sind, die Arbeitsergebnisse aus der wissenschaftlichen Bearbeitung eines Fachgebietes in einem Fachgespräch zu verteidigen. In dem Kolloquium sollen das Thema der Masterarbeit und die damit verbundenen Probleme und Erkenntnisse in einem |
Vortrag dargestellt und diesbezügliche Fragen beantwortet werden.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>bestandenes Kolloquium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Materialflusstechnik II</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Materialflusstechnik II</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Jun.-Prof. A. Katterfeld, (weitere Lehrende: Hon.-Prof. K. Richter), FMBILM</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. A. Katterfeld, (weitere Lehrende: Hon.-Prof. K. Richter), FMBILM</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung; 1 SWS Übung</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten: Übungsaufgaben, Prüfungsvorbereitung 120 h (42 h Präsenzzeit + 78 h selbstständige Arbeit)</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Technische Mechanik, Konstruktionselemente Wünschenswert: Mathematik Statistik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Befähigung zur Auswahl von Förder- und Lagermittel als Planungsbausteine für logistischer Systeme Einschätzung der Einsatzbedingungen und Zweckmäßigkeitbereiche Erlernen von Techniken der Dimensionierung Auslegung und Leistungsermittlung sowie der Definition der funktionellen Bestell- und Beschaffungsangaben</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der Bauformen, Funktionsweise und Verkettungsfähigkeit von ausgewählten Fördermaschinen Dimensionierung der Hauptantriebe, Formulierung maßgebender Auswahlkriterien und Bestellangaben, Nachrechnung von Angeboten und Variantenvergleich</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Teilnahme an Vorlesungen und Übungen; Lösen der Übungsaufgaben und erfolgreiche Präsentationen in den Übungen; Bestehen einer mündlichen oder einer schriftlichen Prüfung (Klausur 90 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Fördertechnik – Elemente und Triebwerke; Fördermaschinen (Hrsg.: Scheffler)</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Materialflusstechnik und Logistik</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Materialflusstechnik und Logistik</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Materialflusstechnik und Logistik</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Hon.-Prof. Dr. K. Richter / Prof. Dr. H. Zadek</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Hon.-Prof. Dr. K. Richter / Prof. Dr. H. Zadek</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 Stunden, Selbststudium: 124 Stunden</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Technische Mechanik, Konstruktionselemente (wünschenswert: Mathematik Statistik)</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse: | Befähigung zur ganzheitlichen Sichtweise sowie zum abstrahieren und problemadäquaten Modellieren logistischer Systeme und von stofflichen, informationellen und monetären Flüssen
Erlernen von allgemeingültigen Grundkonzepten und Ordnungssystemen der begriffs-, Objekt- und Prozessklassifizierung
Erlernen von Techniken zum qualitativen und qualitativen Beschreiben von logistischen Systemen, Wirkprozessen und zepte auf spezifische reale Gegebenheiten und Situationen Befähigung zur Auswahl von Förder- und Lagernmittel als Planungsbaustein für logistische Systeme, Einschätzung der Einsatzbedingungen und Zweckmäßigkeitsbereiche
Erlernen von Techniken der Dimensionierung, Auslegung und Leistungsermittlung sowie der Definition der funktionellen Bestell- und Beschaffungsangaben |
| Inhalt: | Begriffsinhalt und Einordnung: Dienstleistung, Wertschöpfung Basismodelle: Graph, System, Prozess, Zustandsmodell, Regelkreis

Seite 401 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Übungsschein, Klausur 90 Minuten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Fördertechnik – Elemente und Triebwerke; Fördermaschinen (Hrsg.: Scheffler)</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Logistik (Hrsg.: H. Krampe, J. Lucke, Hussverlag, 2006)</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Mathematik I (Lineare Algebra und analytische Geometrie)
engl. Modulbezeichnung: Mathematik I (Lineare Algebra und analytische Geometrie)
ggf. Modulniveau:
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 1. Semester
Semesterlage: Wintersemester
Modulverantwortliche(r): Professur für Geometrie
Dozent(in): Professur für Geometrie
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. CV - Kernfächer
FIN: B.Sc. INF - Kernfächer
FIN: B.Sc. INGINF - Kernfächer
FIN: B.Sc. WIF - Verstehen

Lehrform / SWS:
Vorlesung; Übung
Arbeitsaufwand:
Präsenzzeiten 84h:
SWS Vorlesung
SWS Übungen
Selbstständiges Arbeiten 156h:
Bearbeiten der wöchentlichen Übungszettel,
Prüfungsvorbereitung
240h = 84h Präsenzeit + 156h selbständige Arbeit
Kreditpunkte: 8
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen:

Angestrebte Lernergebnisse:
Lernziele & zu erwerbende Kompetenzen:
Erwerb der für ein Studium der IF, CV, Ing-IF und WIF erforderlichen Kenntnisse zu Begriffen und Strukturen aus der linearen Algebra und Geometrie
Erwerb von Fertigkeiten bei der Lösung von Aufgabenstellungen aus der Linearen Algebra und der Geometrie

Inhalt:
Algebra: Mengen, Relationen und Abbildungen, Vektorräume, lineare Gleichungssysteme, lineare Abbildungen und Matrizen, Determinanten, Eigenwerte und Eigenvektoren
Geometrie: Grundlagen der affinen und projektiven Geometrie, homogene Koordinaten und Transformationen

Studien-/Prüfungsleistungen:
Prüfung: Schriftlich (120 min)

Medienformen:
Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mathematik II (Algebra und Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Mathematik II (Algebra und Analysis)</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Geometrie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Geometrie</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Verstehen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten 84h: SWS Vorlesung SWS Übungen Selbstständiges Arbeiten 156h: Bearbeiten der wöchentlichen Übungszettel, Prüfungsvorbereitung 240h = 84h Präsenzzeit + 156h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung: Schriftlich (120 min)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung: Mathematik III (Stochastik, Statistik, Numerik, Differentialgleichungen)
engl. Modulbezeichnung: Mathematik III (Stochastik, Statistik, Numerik, Differentialgleichungen)
ggf. Modulniveau:
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 3. Semester
Semesterlage: Wintersemester
Modulverantwortliche(r): Professur für Geometrie
Dozent(in): Professur für Geometrie
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. CV - Kernfächer
FIN: B.Sc. INF - Kernfächer
FIN: B.Sc. INGINF - Kernfächer
FIN: B.Sc. WIF - WPF Gestalten & Anwenden

Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeiten 70h:
SWS Vorlesung
SWS Übungen
Selbstständiges Arbeiten 110h:
Bearbeiten der wöchentlichen Übungszettel,
Prüfungsvorbereitung180h = 70h Präsenzzeit + 110h selbstständige Arbeit

Kreditpunkte: 6

Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen:

Angestrebte Lernergebnisse: Lernziele & zu erwerbende Kompetenzen:
Erlernen typischer stochastischer und statistischer Begriffsbildungen und Entwicklung von Fähigkeiten und Fertigkeiten,
urn praktische Aufgaben der Stochastik und Statistik zu bearbeiten
Erwerb der für die numerische Mathematik erforderlichen Grundkenntnisse, Entwicklung von Fertigkeiten bei der Lösung von numerischen Aufgabenstellungen
Erwerb von Grundkenntnissen und Fertigkeiten zur Lösung von Differentialgleichungen

Inhalt: Stochastik: Diskrete und stetige Zufallsgrößen und ihre Verteilungsfunktionen, Grenzwertsätze, Modellierung
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Prüfung: Schriftlich (120 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Mechanische Schwingungen, Struktur- und Maschinendynamik</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Mechanische Schwingungen, Struktur- und Maschinendynamik</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Strackeljan, IFME</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Strackeljan, IFME</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Teilnahmevoraussetzungen: Grundkenntnisse Mechanik und Dynamik inkl. Schwingungen</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Wiederholung grundlegender Schwingungsphänomene Behandlung von Systemen mit mehreren FG Anwendungen im Maschinenbau, Automobiltechnik, Torsionsschwingungen, Schwingungstilgung</td>
</tr>
</tbody>
</table>

Seite 408 Inhaltsverzeichnis
| Auswuchten starrer und elastischer Rotoren |
| Schwingungen einfacher Kontinua |
| Schwingungen von Rotorsystemen, Ermittlung |
| drehzahlabhängiger Eigenfrequenzen |
| Selbsterregte und parametererregte Schwingungen |
| Numerische Methoden, MKS-Systeme |
| Einführung in nichtlineare Schwingungsprobleme |

| Studien-/ Prüfungsleistungen: |
| Erstellung eines Projektes, mündliche Prüfung |

| Medienformen: |
| Skript zur Vorlesung mit umfangreicher Angabe weiterführender Literatur |

| Literatur: |
| Skript zur Vorlesung mit umfangreicher Angabe weiterführender Literatur |
Modulbezeichnung: Mechatronik der Werkzeugmaschinen
engl. Modulbezeichnung: Mechatronics of machine tools

Kürzel: ggf.
Untertitel: ggf. Lehrveranstaltungen:

Studiensemester: M.Sc. ab 1. Semester
Semesterlage:

Modulverantwortliche(r): Prof. Möhring, FMB-IFQ
Dozent(in): Prof. Möhring, FMB-IFQ
Sprache: deutsch

Zuordnung zum Curriculum: FIN: M.Sc. DIGIENG - Fachliche Spezialisierung

Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeiten: Vorlesung 2 SWS, Übung 1 SWS
Selbständige Arbeiten: Nachbereiten der Vorlesungen

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen: Lernziele und zu erwerbende Kompetenzen:

Angestrebte Lernergebnisse:

Kenntnisse über und Verständnis des mechatronischen Systems Werkzeugmaschine
Wissen über die mechatronischen Kernkomponenten spanender Werkzeugmaschinen und deren Funktionsweise
Kenntnisse über die Auslegung und Berechnung des Systemverhaltens
Fähigkeiten zur Beurteilung spanender Werkzeugmaschinen

Inhalt:

Einteilung der Werkzeugmaschinen und das mechatronische System Werkzeugmaschine
Die spanende Werkzeugmaschine als Hochleistungs- und Präzisions-Mechatronik
Kernkomponenten: Mechanische Strukturen, Führungen und Lager, elektrische und elektromechanische Antriebstechnik,
Leistungselektronik, Messsysteme, Steuerungstechnik
Auslegungs- , Berechnungs- und Simulationsverfahren: Analytische Methoden, Finite Elemente Berechnung,
Mehrkörpersimulation, mechatronische Simulation
Maschinendynamik spanender Werkzeugmaschinen
Regelung spanender Werkzeugmaschinen
Messtechnische Analyse und Beurteilung des mechatronischen Verhaltens spanender Werkzeugmaschinen
Prozessverhalten spanender Werkzeugmaschinen
Zukunftstechnologien in mechatronischen Werkzeugmaschinen: Werkstoffe, Aktorik, Sensorik, Regelungsverfahren,
Simulationsmethoden
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Prüfung: Klausur (K120)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>

Seite 411 Inhaltsverzeichnis
Modulbezeichnung: Mechatronische Aktoren und Sensoren
engl. Modulbezeichnung: Mechatronic Actuators and Sensors
ggf. Modulniveau:
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: M.Sc. ab 1. Semester
Semesterlage:
Modulverantwortliche(r): Prof Kaspar, FMB-IMS
Dozent(in): Prof Kaspar, FMB-IMS
Sprache: deutsch
Zuordnung zum Curriculum: FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeiten: Vorlesung 2 SWS, Übung 1 SWS, selbständiges Arbeiten: Nachbereitung der Vorlesung, Lösen von Testaufgaben
Kreditpunkte: 5
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Mechatronische Systeme II

Angestrebte Lernergebnisse:
Lernziele und zu erwerbende Kompetenzen
Aufbau und Funktion mechatronischer Aktoren und Sensoren und deren Integration in mechatronische Systeme
Anwendung mechatronischer Aktoren und Sensoren speziell in den Bereichen Fahrzeug und mobile Systeme

Inhalt:
Einführung kapazitiver und induktiver Aktoren und Sensoren
Elektrische Ansteuerung kapazitiver und induktiver Aktoren
Berechnung und Regelung kapazitiver und induktiver Aktorsysteme
Auswerteschaltungen kapazitiver und induktiver Sensoren
Integrierte Sensor-Aktor-Systeme
Anwendungen
Schwingungsdämpfung Fahrwerk, Lager, Motorlager, Strukturschwingungen Magnetlager

Studien-/Prüfungsleistungen:
Prüfungsvorleistung: Teilnahme an den Übungen
Prüfung: mündliche Prüfung

Medienformen:
Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Medizinische Bildverarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Medical Image Processing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MedBV</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverste-hen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverste-hen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Computervisualistik
| | FIN: B.Sc. CV - Anwendungsfach - Medizintechnik
| | FIN: B.Sc. INF - WPF Informatik
| | FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing
| | FIN: B.Sc. INGINF - WPF Informatik
| | FIN: B.Sc. WIF - WPF Gestalten & Anwenden
| | FEIT: BSc Medizintechnik: Pflicht, 4. Sem |
| Lehrform / SWS: | Vorlesung; Projekt |
| Arbeitsaufwand: | Präsenzzeiten:
| | 2 SWS Vorlesung
| | 2 SWS Projekttreffen
| | Selbstständige Arbeit:
| | Projektplanung und Umsetzung in Teams
| | Vorbereitung der Projektpräsentation
| | Vor- und Nachbearbeitung des Vorlesungsstoffs
| | 150h = 4SWS = 56h Präsenzzeit + 94h selbstständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | Einführung in die Informatik, lineare Algebra, Grundkenntnisse der digitalen Bildverarbeitung |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Lernziele & zu erwerbende Kompetenzen:
| | Fähigkeit zur Anwendung von Algorithmen zur Analyse digitaler Bilder
| | Fähigkeit zur eigenständigen Bearbeitung eines kleinen Projekts
| | Teamfähigkeit
| | Fähigkeit zum interdisziplinären Arbeiten |
| Inhalt: | Digitale Bilder in der Medizin
| | Kommunikation und Speicherung von digitalen Bildern in Krankenhäusern |
| Validierungsmethoden für Bildanalysemethoden
| Fortgeschrittene Bildverbesserungsmethoden
| Fortgeschrittene Segmentierungsmethoden
| Bildregistrierung |

| Studien-/Prüfungsleistungen: | Prüfungsvorleistung ist erforderlich
| Prüfung: schriftlich 120 Min |

| Medienformen: | |

| Literatur: | siehe http://wwwisg.cs.uni-magdeburg.de/bv/mba/mba.html |
Modulbezeichnung: Medizinische Visualisierung
engl. Modulbezeichnung: Medical Visualization
ggf. Modulniveau:
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: M.Sc. ab 1. Semester
Semesterlage: Sommersemester
Modulverantwortliche(r): Professur für Visualisierung
Dozent(in): Prof. Dr. Bernhard Preim
Sprache: englisch
Zuordnung zum Curriculum:
Lehrform / SWS: Vorlesung; Übung
Kreditpunkte: 6
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Computergraphik I, Visualisierung
Inhalt: Charakterisierung medizinischer Schichtdaten
Algorithmen der medizinischen Visualisierung
Interaktionstechniken in der medizinischen Visualisierung
Virtuelle Endoskopie

Seite 415 Inhaltsverzeichnis
	Konzepte und Systeme der computergestützten Anatomieausbildung
	Visualisierung von Gefäßstrukturen und Blutflussdaten
Studien-/Prüfungsleistungen:	Prüfungsvorleistungen: Werden zu Beginn des Semesters bekannt gegeben.
<p>| | Prüfung: mündlich |
| Medienformen: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mesh Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Mesh Processing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>MP</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Visual Computing</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Christian Rössl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Computervisualistik
FIN: B.Sc. CV - Anwendungsfach - Computerspiele
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - Computer Games
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Computervisualistik
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung
2 SWS Übung
Selbstständiges Arbeiten:
Übungsaufgaben
150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Mathematik I und Mathematik II (Lineare Algebra und Analysis), Computergraphik |
| Angestrebte Lernergebnisse: | Lernziele & zu erwerbende Kompetenzen:
Funktion und Implementierung von Algorithmen auf Dreiecksnetzen unter Verwendung geeigneter Datenstrukturen |
| Inhalt: | 3D-scannen und Triangulierung Datenstrukturendiskrete Differentialgeometrie Glätten Parametrisierung |

Seite 417 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Dezimierung</th>
<th>Remeshing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deformation</td>
</tr>
</tbody>
</table>

Studien-/ Prüfungsleistungen:

- Prüfungsvorleistungen: Regelmäßige Teilnahme an den LV, erfolgreiche Bearbeitung der Übungsaufgaben
- Mündliche Prüfung

Medienformen:

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Methoden des Virtual Engineering in der Mechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Methods of Virtual Engineering in Mechanics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Gabbert, FMB-IFME</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Gabbert, FMB-IFME</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung 3 SWS, Übung 1 SWS Selbständiges Bearbeiten eines Projektes</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Kenntnisse der Technischen Mechanik; Informatik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Kenntnisse der Softwareentwicklung Anwendung kommerzieller Softwaretools zur Lösung von komplexen Berechnungsproblemen der Mechanik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einsatz von High Performance Computern (PC-Cluster, Superrechner), Nutzung von Parallelrechnern (MPI) Methoden der Softwareentwicklung Datenformate, Datenstrukturen, Datenschnittstellen Softwaretools, Koppelung unterschiedlicher Softwaretools Grafikprogrammierung; Programmierübungen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Middleware für verteilte industrielle Umgebungen</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Middleware für verteilte industrielle Umgebungen</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Middleware für verteilte industrielle Umgebungen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Matthias Riedl, ifak e.V. Magdeburg</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Matthias Riedl, ifak e.V. Magdeburg</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesungen 2 SWS wöchentliche Übungen: 2 SWS Selbstständiges Arbeiten: Nacharbeiten der Vorlesung Lösen von Übungsaufgaben mit steigender Komplexität Prüfungsvorbereitung 180h = 56h Präsenzzeit + 124h selbstständige Arbeit 180h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Der Kurs ist in die folgenden Teile gegliedert: Vermittlung der Grundlagen für verteilte Anwendungen Struktur und Verhalten von Middleware-Konzepten Anwendung objektorientierter Methoden auf Middleware Vorstellung des objektorientierten Middlewarekonzeptes DOME (Distributed Object Model Environment)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Schwerpunkt dieser Vorlesung ist der Einsatz von Middleware für verteilte industrielle Anwendungen. Es werden Techniken und Entwurfsziele beschrieben, die eine Middleware für verteilte Zugriffe auf Ressourcen benötigt. Hierbei werden ebenfalls objektorientierte Softwarekonzepte mit einbezogen. Es werden</td>
</tr>
</tbody>
</table>
Anforderungen an das Kopplungsverhalten der Komponenten, an reflexive Schnittstellen sowie Softwaremetriken erläutert, die an verschiedenen Middleware gespiegelt werden. Dem Vergleich folgt der Entwurf und die Umsetzung der ereignisgesteuerte Middleware DOME (Distributed Object Model Environment), die wesentliche Eigenschaften für den echtzeitfähigen industriellen Einsatz aufweist. Fragen des verteilten Systemanlaufes, von Performance, Authentifizierung und Autorisierung runden die Lehrveranstaltung ab.

Studien-/ Prüfungsleistungen:
Teilnahme an den Lehrveranstaltungen, erfolgreich absolvierte Praktika
Prüfung am Ende des Moduls

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mikrobiologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Mikrobiologie</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. U. Reichl / Dr. H. Grammel / Dr. K. Bettenbrock</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. U. Reichl / Dr. H. Grammel / Dr. K. Bettenbrock</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Biologie</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung / 2 SWS Praktikum Selbstständiges Arbeiten: Nacharbeiten der Vorlesung Vor- und Nachbereiten des Praktikums: Vorlesung: 3 CP = 90 h (28h Präsenzzeit + 62h selbstständige Arbeit) Praktikum: 2 CP = 60 h (28h Präsenzzeit + 32h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Vorlesung: 3 Praktikum: 2</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Bestandene Klausur Mikrobiologie ist Voraussetzung für Teilnahme am Praktikum</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung zu Mikroorganismen Klassifizierung von Mikroorganismen Struktur und Funktion der prokaryotischen Zelle Wachstum, Vermehrung und Sporenbildung Grundmechanismen des Stoffwechsels Bioenergetik Grundlagen der Genetik</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Vorlesung: Klausur 90 min. Praktikumsschein</td>
</tr>
</tbody>
</table>

Seite 422 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Wird in der Vorlesung bekannt gegeben</td>
</tr>
</tbody>
</table>

Inhaltsverzeichnis
Modulbezeichnung: Mikroskopie und Werkstoffcharakterisierung
engl. Modulbezeichnung: Microscopy and Characterization of Materials
ggf. Modulniveau:
Kürzel: MuWC
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 4. Semester
Semesterlage: Sommersemester
Modulverantwortliche(r): Professur für Werkstoff- und Fügetechnik
Dozent(in): Professur für Werkstoff- und Fügetechnik
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. CV - Anwendungsfach - Werkstoffwissenschaft

Lehrform / SWS: Vorlesung; Praktikum
Arbeitsaufwand:
<table>
<thead>
<tr>
<th>Präsenzzeiten:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 SWS Vorlesung</td>
<td></td>
</tr>
<tr>
<td>1 SWS Praktikum</td>
<td></td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td></td>
</tr>
<tr>
<td>Nachbereiten der Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Vorbereiten des Praktikums</td>
<td></td>
</tr>
<tr>
<td>Anfertigen der Versuchsprotokolle</td>
<td></td>
</tr>
<tr>
<td>150h = 4 SWS = 56h Präsenzzeit + 94h selbständige Arbeit</td>
<td></td>
</tr>
</tbody>
</table>

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Mikrostruktur der Werkstoffe

Angestrebte Lernergebnisse:
Lernziele & zu erwerbende Kompetenzen:

Inhalt:
Lichtmikroskopie
Elektronenmikroskopie
Prüfung mechanischer Eigenschaften
Prüfung elektrischer Eigenschaften

Seite 424 **Inhaltsverzeichnis**
| Studien-/ Prüfungsleistungen: | Leistungen: Erfolgreiche Teilnahme am Praktikum
Prüfung: mündlich M30 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>
| Literatur: | H. Blumenauer: Werkstoffprüfung, Deutscher Verlag für
Grundstoffindustrie, Leipzig/Stuttgart, 1994
W. Schatt, H. Worch,
Werkstoffwissenschaft, Deutscher Verlag für
Grundstoffindustrie, 8. Auflage, 1996
H.J. Bargel, G. Schulze, Werkstoffkunde, Springer Verlag 2005 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mikrostruktur der Werkstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Mikrostruktur der Werkstoffe</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MikWst</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Werkstofftechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Werkstofftechnik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Werkstoffwissenschaft</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>3 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>1 SWS Praktikum</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td></td>
</tr>
<tr>
<td>Nachbereiten der Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Vorbereiten des Praktikums</td>
<td></td>
</tr>
<tr>
<td>Anfertigen der Versuchsprotokolle</td>
<td></td>
</tr>
<tr>
<td>150h = 4 SWS = 56h Präsenzzeit + 94h selbständige Arbeit</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Leistungen: erfolgreiche Teilnahme am Praktikum Prüfung: mündlich M30</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Mobilkommunikation</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Mobile Communication</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MobCom</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Technische Informatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Mesut Güneş</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INFINF - Bereich Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit = 56 h</td>
</tr>
<tr>
<td></td>
<td>• 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>• 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeit = 124 h</td>
</tr>
<tr>
<td></td>
<td>• Bearbeitung von Übungs- und Programmieraufgaben & Prüfungsvorbereitungen</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Computernetze (Computer Networks)</td>
</tr>
<tr>
<td></td>
<td>Networkprogramming for IoT</td>
</tr>
<tr>
<td></td>
<td>Seminar: Hot Topics in Communication Systems</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>• Die Studierenden sind in der Lage die Unterschiede zwischen klassischen Festnetzen und mobilen, drahtlosen Netzen und deren Auswirkungen auf alle Protokollschichten zu verstehen.</td>
</tr>
<tr>
<td></td>
<td>• Umfassender Überblick über Anforderungen an und Prinzipien der Mobilkommunikation</td>
</tr>
</tbody>
</table>

Seite 428 Inhaltsverzeichnis
• Fähigkeit, die grundlegenden Entwurfsalternativen und ihre inhärenten Trade-offs zu analysieren und einzuordnen

Inhalt:

- Technische Grundlagen
- Medienzugriffsverfahren
- Medienzugriffsprotokolle (drahtgebunden/drahtlos)
- Drahtlose LANs (Techniken, Standards, Einsatzgebiete)
- Sicherheitsproblematik
- Netzwerkprotokolle (Mobiles IP, Ad-hoc Netze, Drahtlose Sensornetze, Routing)
- Transportprotokolle (TCP-Varianten und Mobiles TCP)

Studien-/ Prüfungsleistungen:

Erfolgreiche Bearbeitung der Übungs- und Programmieraufgaben
Prüfung: mündlich

Medienformen:

Literatur:

Jochen Schiller, Mobilkommunikation, Addison-Wesley, 2. Auflage, 2003
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Modeling with population balances</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Modeling with population balances</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PBM</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professor for Thermal Process Engineering</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr.-Ing. M. Peglow</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Presence: Weekly lecture 1 SWS Weekly exercises 2 SWS (with computer hands-on) Autonomous work: Complementary reading; final project work 90h (42 h presence + 48 h autonomous work)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>The participants will learn to: characterize systems with coupled properties involving density functions model processes like nucleation, growth and agglomeration solve population balances (analytical solutions, momentum approaches, sectional models) apply population balances to real problems, in particular for process engineering</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Concept of population balances, properties of disperse systems Interaction between particles and continuous phase Relevant properties (internal coordinates) Temporal solution Heat, mass and momentum transfer between the disperse and the continuous phases Interactions between individual particles of the disperse phase Detailed consideration of key processes: nucleation, growth, breakage, agglomeration</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Exam: oral</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>
Further literature given during first lecture |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Modellierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Modeling</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>Mod</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik I</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Gestalten</td>
</tr>
<tr>
<td></td>
<td>WPF KWL</td>
</tr>
<tr>
<td></td>
<td>B, WI 1.2</td>
</tr>
<tr>
<td></td>
<td>WI 2.1</td>
</tr>
<tr>
<td></td>
<td>WI 2.2</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 28h Vorlesung 14 h Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: 42h Vor- und Nachbereitung Vorlesung 36h Entwicklung von Modellen für die Übung 120h: Vorlesung 2 SWS = 28h Präsenzzeit + 42h selbstständige Arbeit Übung 1 SWS = 14h Präsenzzeit + 36h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4 CP</td>
</tr>
<tr>
<td></td>
<td>5 CP (SPO ab 10/2023)</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Schaffung der methodischen Grundlagen zur Umsetzung realweltlicher Problemstellungen in komplexe Softwaresysteme Schaffung eines Grundverständnisses für die Modellierung Erlernen von Techniken für die Prozess- und Datenmodellierung auf fachkonzeptioneller Ebene Vermittlung praktischer Erfahrungen in der modellgetriebenen Systementwicklung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Modellierungstheorie: Von der Diskurswelt zu formalisierten Informationsmodellen Prozesse, Workflows und Geschäftsprozesse Meta-Modelle, Referenzmodellierung</td>
</tr>
<tr>
<td>Inhaltsverzeichnis</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Grundsätze ordnungsmäßiger Modellierung</td>
<td></td>
</tr>
<tr>
<td>Fachkonzeptionelle Modellierung mit höheren Petri-Netzen, der</td>
<td></td>
</tr>
<tr>
<td>Entity Relationship-Methode und der BPMN</td>
<td></td>
</tr>
<tr>
<td>Objektorientierte Modellierung mit UML</td>
<td></td>
</tr>
<tr>
<td>Umsetzung konkreter Aufgabenstellungen</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Schriftliche Prüfung, 120 Min.</td>
<td></td>
</tr>
<tr>
<td>Schein</td>
<td></td>
</tr>
<tr>
<td>Vorleistungen entsprechend Angabe zum Semesterbeginn</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Modellierung und Expertensysteme in der elektrischen Energieversorgung</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Modellierung und Expertensysteme in der elektrischen Energieversorgung</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. Zbigniew Antoni Styczynski (FEIT-IESY)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Zbigniew Antoni Styczynski (FEIT-IESY)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesungen 2 SWS,</td>
</tr>
<tr>
<td></td>
<td>zweiwöchentliche Übungen 1 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbständiges Arbeiten: Nacharbeiten der Vorlesung, Lösung</td>
</tr>
<tr>
<td></td>
<td>von Übungsaufgaben, Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>3 SWS = 150h (42h Präsenzzeit +108h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und erworbene Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Erwerb von Kenntnissen über Modellbildung und Simulation zur Analyse</td>
</tr>
<tr>
<td></td>
<td>der Verhältnisse in elektrischen Energienetzen</td>
</tr>
<tr>
<td></td>
<td>Entwurf von Modellen und Durchführung von Berechnungen und Simulation</td>
</tr>
<tr>
<td></td>
<td>auf der Basis von Modellen</td>
</tr>
<tr>
<td></td>
<td>Erwerb von Kenntnissen zur Entwicklung, Gestaltung und Anwendung von</td>
</tr>
<tr>
<td></td>
<td>Expertensystemen</td>
</tr>
<tr>
<td></td>
<td>Anwendung von Expertensystemen für Problemstellungen in der Energieversorgung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Modellierung -Schaltgeräte, Konstruktion, Funktionsfähigkeiten und</td>
</tr>
<tr>
<td></td>
<td>Modelle - Schaltvorgänge und Darstellung von Wanderwellenvorgängen im Netz</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Modellierung und Simulation von Computernetzen</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Modeling and Simulation of Computer Networks</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>SimComNets</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Technische Informatik / Communication and Networked Systems</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Mesut Güneş</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit = 56 h</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td>Bachelor:</td>
<td>Selbstständige Arbeit = 94 h</td>
</tr>
<tr>
<td></td>
<td>Bearbeitung von Übungs- und Programmieraufgaben & Prüfungsvorbereitungen</td>
</tr>
<tr>
<td>Master:</td>
<td>Selbstständige Arbeit = 124 h</td>
</tr>
<tr>
<td></td>
<td>Bearbeitung von Übungs- und Programmieraufgaben in erweitertem Umfang & Prüfungsvorbereitungen</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5</td>
</tr>
<tr>
<td></td>
<td>Master: 6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>ComputernetzeAlgorithmen und Datenstrukturen</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
</tbody>
</table>
Grundlegendes Verständnis der Modellierung von Computersystemen und Computernetzen
Verständnis für den Entwurf, Aufbau und die Erstellung von Simulationssystemen
Kompetenz Simulationen wissenschaftlich durchzuführen und zu evaluieren
Kompetenz im Entwerfen von großen Experimentserien
Kompetenz im Nutzung eines ereignisorientierten Netzwerksimulators

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Introduction to simulation</td>
</tr>
<tr>
<td></td>
<td>General principles of discrete-event simulations</td>
</tr>
<tr>
<td></td>
<td>Introduction to network simulators</td>
</tr>
<tr>
<td></td>
<td>Statistical models in simulations</td>
</tr>
<tr>
<td></td>
<td>Random-number and random-variate generation</td>
</tr>
<tr>
<td></td>
<td>Queuing models</td>
</tr>
<tr>
<td></td>
<td>Input modeling</td>
</tr>
<tr>
<td></td>
<td>Verification and validation of simulation models</td>
</tr>
<tr>
<td></td>
<td>Output analysis</td>
</tr>
<tr>
<td></td>
<td>Design of experiments</td>
</tr>
<tr>
<td>Für Master: erweiterte Kompetenzen im wissenschaftlichen Forschen und Schreiben</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Leistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regelmäßige Teilnahme an Vorlesung und Übungen</td>
</tr>
<tr>
<td></td>
<td>Erfolgreiche Bearbeitung einer Programmieraufgabe</td>
</tr>
<tr>
<td></td>
<td>Prüfung: Klausur 120 min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eine ausführliche Literaturliste wird in der Vorlesung bekannt gegeben.</td>
</tr>
<tr>
<td></td>
<td>Basis-Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Molekulare Immunologie</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Molekulare Immunologie</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FME, Prof. Dr. B. Schraven</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>FME, Prof. Dr. B. Schraven</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Biologie</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung Selbstständiges Arbeiten: Nacharbeiten der Vorlesung 120 h (28h Präsenzzeit + 92h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Aufbauend auf der Beherrschung der Grundprinzipien der Zellbiologie und Immunologie aus dem zweiten bzw. vierten Semester Erwerb von Spezialkenntnissen auf diesem Gebiet. Verstärkung der Motivation zur wissenschaftlichen Arbeitsweise</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Molekulare Immunologie Immunantwort Signaltransduktion der Immunantwort Immunregulation Immundefizienzen Tumorimmunologie Autoimmunerkrankungen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Klausur 2 Std.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Wird in der Vorlesung bekannt gegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Molekulare Zellbiologie</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Molekulare Zellbiologie</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Molekulare Zellbiologie</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FME, Prof. Dr. M. Naumann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>FME, Prof. Dr. M. Naumann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Biologie</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Nacharbeiten der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>90 h (28h Präsenzzeit + 62h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Aufbauend auf das Wissen aus dem Modul „Zellbiologie“ erwerben die Studierenden die Fähigkeit, die wichtigsten Vorgänge und Prinzipien auf die molekulare Ebene zu übertragen.</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in die Zellbiologie</td>
</tr>
<tr>
<td></td>
<td>Zellorganisation und Organellen</td>
</tr>
<tr>
<td></td>
<td>Membranen und Membranorganisation</td>
</tr>
<tr>
<td></td>
<td>Zelltransport</td>
</tr>
<tr>
<td></td>
<td>Zellkommunikation</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Klausur 2 Std.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Wird in der Vorlesung bekannt gegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Multimedia and Security</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Multimedia and Security</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MMSEC</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>wöchentliche Vorlesung: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>wöchentliche Übung einschl. Referatsthema: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Aufarbeitung der Vorlesung und Bearbeitung des Referates</td>
</tr>
<tr>
<td></td>
<td>180h (56 h Präsenzzeit + 124 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorlesung „Sichere Systeme“ oder gleichgelagerte LV, eine Vorlesung zu den Grundlagen der Mustererkennung (Pattern recognition)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Der/die Studierende soll Sicherheitsprobleme in Multimediaanwendungen erkennen und lösen können. Dafür soll er/sie Fähigkeiten erlernen Multimedia spezifische Umsetzungen von Sicherheitsprotokollen für Bild, Video und Audio sowie Komplexe anwenden können.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Motivation, Einführung und Grundlagen, sowie ausgewählte Themen zu:</td>
</tr>
<tr>
<td></td>
<td>Intellectual Property Rights (IPR), Digital Rights Management (DRM)</td>
</tr>
<tr>
<td></td>
<td>Access Protection: Pay-TV, Scrambling and Encryption of Video- and Audio Data, User Authentication and Accounting</td>
</tr>
<tr>
<td></td>
<td>Verdeckte Kommunikation: Hidden Communication, Steganography</td>
</tr>
</tbody>
</table>

Seite 440 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Authenticity and Integrity of digital Media: Grundlegende Techniken wie Electronic Signatures, Digital Watermarking, Perceptual Hashing, Digital Forensics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>siehe unter wwwiti.cs.uni-magdeburg.de/iti_amsl/lehre/</td>
</tr>
</tbody>
</table>

| Studien-/Prüfungsleistungen: | Prüfungsleistung / -form: Referat
Das Referat umfasst eine eigenständige und vertiefte schriftliche Auseinandersetzung mit einem Problem aus dem Arbeitszusammenhang der Lehrveranstaltung unter Einbeziehung und Auswertung einschlägiger Literatur, sowie die Darstellung der Arbeit und die Vermittlung ihrer Ergebnisse im mündlichen Vortrag sowie in der anschließenden Diskussion. Die Ausarbeitungen müssen schriftlich vorliegen |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Multimedia Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Multimedia Retrieval</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>MIR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Data and Knowledge Engineering</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Andreas Nürnberger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| **Zuordnung zum Curriculum:** | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Data Processing for Data Science
FIN: M.Sc. DKE (alt) - Bereich Methods II
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| **Lehrform / SWS:** | Vorlesung; Übung |
| **Arbeitsaufwand:** | Präsenzzeiten:
wöchentliche Vorlesungen 2 SWS
wöchentliche Übungen 2 SWS
Selbstständiges Arbeiten:
übungsaufgaben & Prüfungsvorbereitung
180h (56h Präsenzzeit in den Vorlesungen & Übungen + 124h selbstständige Arbeit) |
| **Kreditpunkte:** | 6 |
| **Voraussetzungen nach Prüfungsordnung:** | Grundlegende Kenntnisse von Datenbanken |
| **Empfohlene Voraussetzungen:** | |
| **Angestrebte Lernergebnisse:** | Lernziele & erworbene Kompetenzen:
Grundverständnis der Suche in Sammlungen von Multimedia Daten
Kenntnisse von Konzepten des Information Retrievals
Kenntnisse zur Ähnlichkeitsberechnung zwischen Medienobjekten
Kenntnisse über Algorithmen und Datenstrukturen zur effizienten Ähnlichkeitsberechnung
Kenntnisse der Erzeugung und Verwendung deskriptiver Merkmale (features) aus Multimediaobjekten (Text, Bild, Ton, Video) |
<table>
<thead>
<tr>
<th>Befähigung zur Auswahl und Einschätzung von alternativen Konzepten zur Ähnlichkeitssuche für konkrete Szenarien der (interaktiven) Suche</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt: Einleitung und Begriffe</td>
</tr>
<tr>
<td>Feature-Extraktions- und Transformationsverfahren</td>
</tr>
<tr>
<td>Algorithmen und Datenstrukturen zur effizienten Suche</td>
</tr>
<tr>
<td>Benutzerschnittstellen für Multimedia Retrieval Systeme</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen: Leistungen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Medienformen: Power Point, Tafel</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
</tr>
<tr>
<td>Kürzel:</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Semesterlage:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
from storytelling and narration to the explanation of data. The seminar topics, cover narrative genres, such as animation, slide sets and data comics, narrative structures derived from storytelling, such as the Martini Glass structure and the Freytag's pyramid. The topics also cover a wide range of applications, including molecular visualization, visualization of astronomy and climate data as well as visualizations related to business and finance data. Accordingly, different visualization techniques are provided, e.g., time-line based visualization, various diagram types but also multi-scale 3D visualizations.

Inhalt:	Overview of Narrative VisualizationConcepts and Tools for Story GenerationApplications in climate research, molecular research and astronomyApplications in business and finance
Studien-/ Prüfungsleistungen:	Examinations: student talk, seminar paper (10 pages)
Medienformen:	PowerPoint presentation, use of whiteboard, videos
Literatur:	Selected publications primarily from the following venues IEEE TVCG, ACM SIGCHI and CGF
Modulbezeichnung: Neural-symbolic Integration
engl. Modulbezeichnung: Neural-symbolic Integration
ggf. Modulniveau:
Kürzel: NeuroSymbV
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: M.Sc. ab 1. Semester
Semesterlage: Sommersemester
Modulverantwortliche(r): Prof. Till Mossakowski
Dozent(in): Prof. Till Mossakowski
Sprache: englisch
Zuordnung zum Curriculum:
FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Learning Methods & Models for Data Science
FIN: M.Sc. DKE (alt) - Bereich Fundamentals
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeiten: 14 X 4h (2h Vorlesung + 2h Übung) = 56 h
Selbstständiges Nachbereiten der Vorlesung: 124 h
Kreditpunkte: 6 CP
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: LogikDeep LearningMathematik I (Lineare Algebra)
Angestrebte Lernergebnisse: Knowledge of the limitations of neural and of symbolic approachesKnowledge of different neural-symbolic architecturesAbility to choose and document an architecture for a given problemAbility to follow the recent literature on neural-symbolic integration
Inhalt: Neural networks can learn flexibly from noisy data, but suffer from phenomena such as overfitting and catastrophic forgetting. Logical formalisms, on the other hand, can employ represent knowledge in a very general and abstract way, but suffer from a lack of reference of the symbols to real sensor data.
Neural-symbolic integration tries to combine the strengths of both worlds in order to advance towards strong artificial intelligence. Current neural-symbolic integration systems can already outperform both deep learning and logical reasoning. The lecture will introduce into the field and present cutting-edge neural-symbolic integration frameworks such as logic tensor networks, neural logic machines and logical neural networks, as well as a systematic overview of neural-symbolic frameworks.

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Literatur:</th>
</tr>
</thead>
</table>
| Studien-/ Prüfungsleistungen: | P. Hitzler and M. K. Sarker (eds.): Neuro-Symbolic Artificial Intelligence, IOS Press, 2022
Michael van Bekkum, Maaike de Boer, Frank van Harmelen, André Meyer-Vitali, Annette ten Teije: Modular design patterns for hybrid learning and reasoning systems. Appl. Intell. 51(9): 6528-6546 (2021)
Die genauen Voraussetzungen für die Teilnahme an der Prüfung werden zu Beginn Veranstaltung bekanntgegeben. |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Neuronale Netze</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Neural Networks</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>NN</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FIN: Lehrstuhl Praktische Informatik / Artificial Intelligence</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>FIN: Prof. Dr.-Ing. Sebastian Stober</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Computer Games</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit = 28 Stunden:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit = 122 Stunden:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung der Vorlesung, Bearbeiten von</td>
</tr>
<tr>
<td></td>
<td>Übungs- und Programmieraufgaben</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP (Bachelor und Master)</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Einführung in die Informatik, Algorithmen und Datenstrukturen, Modellierung, Mathematik I bis III</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lerneergebnisse:</td>
<td>Anwendung von Methoden der Datenanalyse mit Neuronalen Netzen zur Lösung von Klassifikations-, Regressions- und weiteren statistischen Problemen</td>
</tr>
<tr>
<td></td>
<td>Bewertung und Anwendung neuronaler Lernverfahren zur Analyse komplexer Systeme</td>
</tr>
<tr>
<td></td>
<td>Befähigung zur Entwicklung von Neuronalen Netzen</td>
</tr>
</tbody>
</table>

Seite 452 Inhaltsverzeichnis
| Inhalt: | Einführung in die Grundlagen der neuronalen Netze aus Sicht der Informatik
 | Behandlung von Lernparadigmen und Lernalgorithmen, Netzmodelle |
|---|---|
| Studien-/ Prüfungsleistungen: | Prüfung in schriftlicher Form, Umfang: 120 Minuten,
 | Ankündigung der notwendigen Vorleistungen in der ersten Veranstaltungswoche und auf der Vorlesungswebseite Schein (schriftlich),
 | Ankündigung der notwendigen Vorleistungen in der ersten Veranstaltungswoche und auf der Vorlesungswebseite |
| Medienformen: | |
| Literatur: | Rudolf Kruse et al., Computational Intelligence, 2. Auflage, Springer-Vieweg, 2015
<pre><code> | Zusätzliche weiterführende Literatur wird auf der Vorlesungswebseite bekanntgegeben. |
</code></pre>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Nichtlineare Finite Elemente</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Nonlinear Finite Elements</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Jun.-Prof. Dr. Juhre, FMB-IFME</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Juhre, FMB-IFME</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS selbständiges Bearbeiten eines Projektes</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in der Technischen Mechanik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Qualifikationsziele und Inhalte des Moduls: Ohne nichtlineare Berechnungen ist es z.B. nicht möglich, die Tragreserven einer Konstruktion zu erkennen und zu nutzen (Leichtbau!) und die Zuverlässigkeit von Konstruktionen zu verbessern (schadentolerante Bauweisen, Sicherheit bei Rissen, Alterungen, Korrosion u.ä.); die Simulation und die Optimierung von Fertigungsprozessen (z.B. Umformen, Schmieden, Schneiden, Abtragen) sind ohne nichtlineare Berechnungen nicht möglich. Darüber hinaus führen nichtlineare Berechnungen zu einem besseren Verständnis des Strukturverhaltens (z.B. bei Stabilitätsphänomenen). In der Vorlesung werden die Studenten befähigt, die Notwendigkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Prüfung: Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Numerical Methods for Visual Computing</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>NMVC</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>NMVC</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Juniorprofessur für Echtzeit-Computergraphik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Fundamentals of Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>In class teaching:</td>
</tr>
<tr>
<td></td>
<td>- 2 SWS lecture / 2 SWS tutorial</td>
</tr>
<tr>
<td></td>
<td>Self-study:</td>
</tr>
<tr>
<td></td>
<td>- Self-study of lecture material / solution of exercises and assignments</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 Credit Points = 180h (56h in class + 124h self study), grading scheme according to exam regulations</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>The course provides an introduction to common numerical methods for visual computing, such as numerical linear algebra, time integration schemes for ordinary differential equations, numerical solution of partial differential equations, basis representations for functions, and tensor analysis. It also covers the requisite mathematics.</td>
</tr>
</tbody>
</table>
| Inhalt: | Numerical linear algebra (e.g. (iterative) solution of linear systems, eigen and singular value decomposition)Basis representations ((Fast) Fourier transform, finite elements, polynomial bases; interpolation and quadrature)Numerical
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>solution of ODEs</td>
<td>Numerical solution of PDEs</td>
</tr>
<tr>
<td>Vector calculus and tensor analysis</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Oral exam</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Board, slides</td>
</tr>
<tr>
<td></td>
<td>L. N. Trefethen. Approximation Theory and Approximation Practice. Society</td>
</tr>
<tr>
<td></td>
<td>2018. (Additional relevant literature will be announced in class)</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Optimal Control</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Optimal Control</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Rolf Findeisen (FEIT-IFAT)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Rolf Findeisen (FEIT-IFAT)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesung 2 SWS, wöchentliche Übungen 1 SWS, Selbständiges Arbeiten: Nachbereitung der Vorlesung, Lösung der Übungsaufgaben und Prüfungsvorbereitung, Projektarbeit 3 SWS = 150h (42h Präsenzzeit +108h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Lernziele und erworbene Kompetenzen: The module provides an introduction to the formulation, theory, solution and application of optimal control theory/dynamic optimization. The students are enabled to formulate and solve optimal control problems appearing in many applications spanning from medicine, process control up to systems biology. Besides the theoretical basis numerical solution approaches for optimal control problems are provided.</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Static optimization Numerical algorithms Dynamic programming, principle of optimality, Hamilton-Jacobi-Bellmann equation Variational calculus Pontryagin maximum principle Numerical solution of optimal control problems Infinite and finite horizon optimal control, LQ optimal control Model predictive control Game theory Application examples from various fields such as chemical engineering, economics, aeronautics, robotics, biomedicine and systems biology</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Klausur 120 min</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>

Seite 458 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Parallel Programming - M</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Parallel Programming - M</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PP-M</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Michael Kuhn</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Michael Kuhn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Computational Methods in Engineering - Pflicht</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Attendance: 2 SWS lecture + 2 SWS exercise (56h)Self-study: Working on the exercises, reviewing the lecture, preparing for the exam (94h)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Required skills: Practical knowledge of a programming language and the ability to create simple applications Recommended skills: Basic knowledge about operating systems Basic knowledge about parallel programming</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Participants will learn how to create parallel programs using various programming approaches, how to execute them and how to optimize their execution. In addition, further concepts for parallelization are taught and put into practice in the exercises.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Parallel programming is becoming increasingly important, as even phones and laptops have several processor cores. Some supercomputers even consist of several million cores and have established themselves as a useful and indispensable tool for many areas of science. The resulting analyses and simulations have made it possible to significantly increase scientific insight in many areas. However, the optimal use of these components is no easy task, which is why scientists are constantly faced with new challenges when developing efficient applications. A deeper understanding</td>
</tr>
</tbody>
</table>
of the hardware and software environment as well as the possible causes of errors is therefore essential for parallel programming. In the lecture, the basics of parallel programming are taught; the exercises serve the practical application and implementation of the acquired knowledge in the C programming language. The lecture will cover some of the most important topics: Hardware and software concepts (multi-core processors, processes/threads, NUMA etc.), different approaches to parallel programming (OpenMP, POSIX threads, MPI) as well as tools for performance analysis and debugging (scalability, deadlocks, race conditions etc.). Moreover, reasons and solutions for performance problems are discussed and alternative approaches to parallel programming are presented. Examples and problems are illustrated using real scientific applications.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Active and successful participation in the exercisesWritten exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Parallel Storage Systems</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Parallel Storage Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PSS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Michael Kuhn</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Michael Kuhn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Presence: 2 hours of lecture + 2 hours of exercises (56h)</td>
</tr>
<tr>
<td></td>
<td>Self-study: Solving exercises, independent studies, preparation for final examination (124h)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Practical knowledge of a programming language and the ability to create simple applications</td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td>Basic knowledge about operating systems</td>
</tr>
<tr>
<td></td>
<td>Basic knowledge about parallel programming</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Participants will learn how parallel applications perform I/O using different programming concepts and how I/O can be optimized. Additionally, they will gain insight into and practical experience with the internals of storage and file systems.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Parallel programming is becoming increasingly important since even phones and laptops contain multiple processor cores nowadays. Supercomputers can contain up to several million cores and have become a useful and important tool for a wide range of scientific domains. The analyses and simulations enabled by them have accelerated the process of gaining scientific insight considerably.</td>
</tr>
</tbody>
</table>
The amount of collected and produced data is growing exponentially; it has to be stored, analyzed and processed efficiently since I/O significantly affects overall performance. Vastly different rates of performance development for processors and storage hardware result in a performance imbalance, which makes it even more important to take a close look at storage systems in order to be able to meet future demands.

The lecture will teach the fundamentals of parallel storage systems and I/O; the exercises will allow transferring and applying the acquired skills with a system programming language such as C, C++ or Rust.

As part of the lecture, we will cover the complete storage stack: Storage devices and networks (hard disk drives, solid-state disks, storage area networks etc.), local and distributed file systems (in kernel and user space, novel concepts like snapshots and deduplication) as well as the I/O interfaces layered on top (POSIX, MPI-I/O, NetCDF and ADIOS). Moreover, we will discuss reasons and solutions for performance problems as well as alternative approaches for I/O (such as cloud interfaces). Problems and examples will be motivated using real-world scientific applications.

Studien-/ Prüfungsleistungen:
- Active participation in the exercises
- Oral examination

Medienformen:

Literatur:
- High Performance Parallel I/O (Prabhat und Quincey Koziol)
Modulbezeichnung: Parallele Programmierung
engl. Modulbezeichnung: Parallel Programming
Kürzel: PP
Sprache: deutsch

Zuordnung zum Curriculum:
FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - WPF Technische Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. INGINF - WPF Technische Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden

Lehrform / SWS:
Vorlesung; Übung

Arbeitsaufwand:
Präsenz: 2 SWS Vorlesung + 2 SWS Übung (56h)
Selbständiges Arbeiten: Bearbeiten der Übungsaufgaben, Nachbereiten der Vorlesung, Vorbereiten auf die Prüfung (94h)

Kreditpunkte: 5 CP

Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen:
Praktische Kenntnis einer Programmiersprache und die Fähigkeit, einfache Programme zu erstellen
Kenntnis der Grundmechanismen von Betriebssystemen (z. B. Technische Informatik)
Grundkenntnisse in Rechnerarchitekturen

Angestrebte Lernergebnisse:
Die Teilnehmenden lernen, parallele Programme mit verschiedenen Programmieransätzen zu erstellen, zur Ausführung zu bringen und im Ablauf zu optimieren. Außerdem werden weitere Konzepte zur Parallelisierung vermittelt und in den Übungen praktisch umgesetzt.

Inhalt:
Die parallele Programmierung gewinnt immer mehr an Bedeutung, da heutzutage bereits Mobiltelefone und Laptops über mehrere Prozessorkerne verfügen. Supercomputer besitzen teilweise sogar mehrere Millionen Kerne und haben sich als ein nützliches und mittlerweile unverzichtbares Werkzeug für viele Wissenschaftsbereiche etabliert. Die dadurch möglichen Analysen und Simulationen haben es erlaubt, den
wissenschaftlichen Erkenntnisgewinn in vielen Bereichen deutlich zu steigern.

In der Vorlesung werden die Grundlagen der parallelen Programmierung gelehrt; die Übungen dienen der praktischen Anwendung und Umsetzung der erworbenen Kenntnisse in der Programmiersprache C.

Im Rahmen der Vorlesung werden einige der wichtigsten Themengebiete betrachtet: Hard- und Softwarekonzepte (Mehrkernprozessoren, Prozesse/Threads, NUMA etc.), unterschiedliche Ansätze zur parallelen Programmierung (OpenMP, POSIX Threads, MPI) sowie Werkzeuge zur Leistungsanalyse und Fehlersuche (Skalierbarkeit, Deadlocks, Race Conditions etc.). Zusätzlich werden Gründe und Lösungsansätze für Leistungsprobleme diskutiert und alternative Ansätze für die parallele Programmierung vorgestellt. Beispiele und Probleme werden anhand realer wissenschaftlicher Anwendungen veranschaulicht.

| Studien-/ Prüfungsleistungen: | Aktive und erfolgreiche Teilnahme an den Übungen
Schriftliche Prüfung |
|-----------------------------|--|
(Thomas Sterling, Matthew Anderson und Maciej Brodowicz) |
<p>| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Internship</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 7. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Studiendekan der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Alle Dozenten der FIN</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV
FIN: B.Sc. INF
FIN: B.Sc. INGINF
FIN: B.Sc. WIF</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>20 Wochen
Praktikumsspezifisch</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>18</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Praktikumsspezifisch in Bezug auf den Studiengang</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Praktikumsbericht</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Praktikum IT Sicherheit</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Praktikum IT Sicherheit</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>P-ITSEC</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>28 h Projektbesprechung, Abgabe und Abnahme</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>132 h Entwicklung einer Softwarelösung</td>
</tr>
<tr>
<td></td>
<td>20 h Vorbereitung und Durchführung einer Präsentation und der</td>
</tr>
<tr>
<td></td>
<td>Abgabe der Ergebnisse des Softwarepraktikums</td>
</tr>
<tr>
<td></td>
<td>(28 h Präsenzzeit + 152 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Der/die Studierende soll im Schwerpunkt Sicherheit und</td>
</tr>
<tr>
<td></td>
<td>Kryptologie innerhalb eines Praktikums</td>
</tr>
<tr>
<td></td>
<td>(Softwareentwicklungsprojekt) ergänzende praktische</td>
</tr>
<tr>
<td></td>
<td>Fähigkeiten der IT-Sicherheit erwerben. Dabei soll er/sie ein</td>
</tr>
<tr>
<td></td>
<td>aktuelles und anspruchvolles Thema innerhalb einer</td>
</tr>
<tr>
<td></td>
<td>dazugehörigen Aufgabenstellung selbständig bearbeiten und</td>
</tr>
<tr>
<td></td>
<td>lösen sowie mündlich präsentieren und schriftlich</td>
</tr>
<tr>
<td></td>
<td>dokumentieren.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Praktikum als Softwareentwicklungsprojekt: Bearbeitung eines</td>
</tr>
<tr>
<td></td>
<td>ausgewähltes aktuelles Themas und Lösung einer</td>
</tr>
<tr>
<td></td>
<td>anspruchsvollen Entwicklungsaufgabe aus dem Bereich der IT</td>
</tr>
<tr>
<td></td>
<td>Sicherheit, wie zum Beispiel aus:</td>
</tr>
<tr>
<td></td>
<td>System-, Netzwerk- und Anwendungssicherheit</td>
</tr>
<tr>
<td></td>
<td>Kryptologie und Protokolle</td>
</tr>
<tr>
<td>Studien- / Prüfungsleistungen:</td>
<td>wissenschaftliches Projekt, beinhaltet Präsentation, Abgabe und Abnahme des Softwareentwicklungsprojekts</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>siehe unter www.iti.cs.uni-magdeburg.de/iti_amsl/lehre/</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PPSW</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Koordinator Internationale Beziehungen und Austausch</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Claudia Krull</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Fundamentals of Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>90 Stunden (40 h Präsenzzeit + 50 h selbständiges Arbeiten)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Students have understood and practiced the skills necessary for scientific work and writing scientific publications, such as a Master’s thesis. Students have learned soft skills and corresponding techniques, helpful for mastering their studies and also their professional and private life, such as setting goals, time management and working in teams.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>The course covers the following topics, among others: Introduction to Scientific Work Literature Research and Management Research Projects and Thesis Topics Scientific Writing - Thesis Structure and Writing Techniques Study Skills & Self Management Project Management & Team Work Presentation Skills The project and term paper topic can be related to an ongoing research project or be used for Master’s thesis preparation.</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung Hausarbeit / Term paper</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Process control</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Process control</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. Achim Kienle (FEIT-IFAT)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Achim Kienle (FEIT-IFAT)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
</tbody>
</table>

Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzeiten:
- wöchentliche Vorlesung 2 SWS, wöchentliche Übungen 1 SWS,
Selbständiges Arbeiten:
- Nachbereitung der Vorlesung, Lösung der Übungsaufgaben und
Prüfungsvorbereitung
3 SWS = 150h (42h Präsenzzeit +108h selbständige Arbeit)
Kreditpunkte: 5
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Basic knowledge in control theory
Angestrebte Lernergebnisse:
Students should
- Learn fundamentals of multivariable process control with special
 emphasis on decentralized control
- Gain the ability to apply the above mentioned methods for the
 control of single and multi unit processes
- Gain the ability to apply advanced software (MATLAB) for
 computer aided control system design
Inhalt:
- Introduktion
- Process control fundamentals
- Mathematical models of processes
- Control structures
- Decentralized control and Relative gain analysis
- Tuning of decentralized controllers
- Control implementation issues
- Case studies
- Plantwide control
Studien-/Prüfungsleistungen: Mündliche Prüfung, Referat
Medienformen:
Literatur:

Seite 470 Inhaltsverzeichnis
Modulbezeichnung: Produktdatenmodellierung
engl. Modulbezeichnung: Produktdatenmodellierung
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 1. Semester
Semesterlage:
Modulverantwortliche(r): Prof. Dr. Christian Diedrich, FEIT-IFAT
Dozent(in): Prof. Dr. Christian Diedrich, FEIT-IFAT
Sprache: deutsch
Zuordnung zum Curriculum: FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeiten:
Wöchtl. Vorlesungen 2 SWS/ wöchtl. Übungen 1 SWS
Selbstständiges Arbeiten:
Nacharbeiten der Vorlesung; Lösung der Übungsaufgaben und Prüfungsvorbereitung
120 h (42 h Präsenzzeit + 78 h selbstständige Arbeit)
Kreditpunkte: 5
Voraussetzungen nach Prüfungsordnung: Grundkenntnisse der Informatik und Softwareentwicklung
Empfohlene Voraussetzungen:
Angestrebte Lernergebnisse: Klassifikation von Komponenten technischer Systeme hinsichtlich ihrer Modellcharakteristika
Vermittlung der meth. Grundl. für die Produktdatenbeschreibung, dazu gehören: Merkmalsysteme, semantische Netze und Notationsformen wie z.B. XML und Klassendiagramme
Vorstellung wesentlicher Standards auf dem Gebiet wie z.B. IEC 61360, ecl@ss, ETIM, BMEcat, PROLIST
Vorstellung eines merkmalbasierten Informationsmodells mechanisch, elektrische und automatisierungstechnische Anwendungsbeispiele
Inhalt: In vielen Bereichen des Maschinen- und Anlagenbaus sowie der Automatisierungstechnik gewinnt die effiziente Informationsfluss zwischen verschiedenen Lebenszyklusphasen, Werkzeugen und den agierenden Ingenieuren immer größere Bedeutung.
Dabei besteht der Trend, Routinearbeiten des Engineerings schrittweise durch automatisierte oder teilautomatisierte technische Abläufe abzulösen.
Dazu werden eindeutige digital verfügbare Beschreibungen der Komponenten der technischen Systeme benötigt.
Die Beschreibungen werden als Produktdaten bezeichnet, die in mechatronischen Modellen zusammengeführt werden. Diese Lehrveranstaltung vermittelt die Grundlagen zur digitalen Modellierung technischer Systeme.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Teilnahme an den Lehrveranstaltungen; Prüfung am Ende des Moduls, Punktvergabe nach schriftlicher Klausur oder mündlicher Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Programmierparadigmen</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Programming Paradigms</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PGP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr.-Ing. Christian Braune</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Christian Braune</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h = 4 SWS = 56 h Präsenzzeit + 94 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Einführung in die Informatik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Kenntnisse in den wesentlichen Programmierparadigmen Anwenden der der Techniken dieser Paradigmen Entscheidungskompetenz zur Anwendung von geeigneten Programmierparadigmen in der Praxis</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Konzepte der wesentlichen Paradigmenprozedural, objektorientiert, funktional, logisches, sowie ggf weitere ParadigmenTechnische Umsetzung der Paradigmen in ProgrammiersprachenAnwendung der Paradigmen in Programmiersprachen wie z.B. Java Scala Haskell Prolog Entscheidungskriterien für Paradigmen</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung erforderlich Prüfung: mündliche Prüfung (wenn es hinreichend viele Teilnehmer gibt: schriftliche Klausur, 120 Minuten)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Prozessmanagement</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Prozessmanagement</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Prozessmanagement</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik - Managementinformationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik - Managementinformationssysteme</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>SWS Vorlesung = 28h, 2 SWS Übung = 28h</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Entwicklung von Lösungen in der Übung</td>
</tr>
<tr>
<td></td>
<td>150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Kenntnisse zu Methoden und Werkzeugen in Bereich von Managementinformationssystemen (z.B. durch Veranstaltung: Einführung in Managementinformationssysteme)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Verständnis der Beeinflussung der Aspekte Kundenorientierung, Produktivität und Wert einer Organisation durch Prozesse</td>
</tr>
<tr>
<td></td>
<td>Anwendung einer methodischen Herangehensweise zur Analyse und Optimierung von Prozessen</td>
</tr>
<tr>
<td></td>
<td>Anwendung einer methodischen Herangehensweise zur Messung von Prozessleistungen</td>
</tr>
<tr>
<td></td>
<td>Anwendung einer methodischen Herangehensweise zur Einführung eines Prozessmanagements in Organisationen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen zum Prozessmanagement</td>
</tr>
<tr>
<td></td>
<td>Vorgehenskonzept zur Einführung eines Prozessmanagements</td>
</tr>
<tr>
<td>Stichworte</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Methoden zur Prozeßidentifikation und</td>
<td></td>
</tr>
<tr>
<td>Prozessimplementierung</td>
<td></td>
</tr>
<tr>
<td>Prozesscontrolling</td>
<td></td>
</tr>
<tr>
<td>Methoden zur Prozessverbesserung und Prozeßerneuerung</td>
<td></td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td></td>
</tr>
<tr>
<td>Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Product Lifecycle Management</td>
<td></td>
</tr>
</tbody>
</table>

| Studien-/ Prüfungsleistungen: |
| Prüfungsvorleistung: Das erfolgreiche Absolvieren der |
| Semesteraufgabe ermöglicht den Studierenden die Teilnahme |
| an der mündlichen Prüfung Prüfung: mündliche Prüfung |

<p>| Medienformen: |
| Literatur: |
| Siehehttp://bauhaus.cs.uni-magdeburg.de |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Qualitätsmanagementsysteme (FIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Qualitätsmanagementsysteme (FIN)</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Qualitätsmanagementsysteme (FIN)</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik - Managementinformationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik - Managementinformationssysteme</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. DKE - Applied Data Science
 FIN: M.Sc. DKE (alt) - Bereich Applications
 FIN: M.Sc. INF - Bereich Informatik
 FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
 2 SWS Vorlesung = 28h
 2 SWS Übung = 28h
 Selbstständiges Arbeiten:
 Vor- und Nachbereitung Vorlesung
 Entwicklung von Lösungen in der Übung
 150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | Kenntnisse zu Methoden und Werkzeugen in Bereich von Managementinformationssystemen (z.B. durch Veranstaltung: Einführung in Managementinformationssysteme) |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Lernziele & zu erwerbende Kompetenzen:
 Verständnis des Spannungsfeldes aus Qualität, Kosten und Zeit
 Anwendung einer methodischen Herangehensweise zur Einführung eines Qualitätsmanagements in Organisationen
 Verständnis der rechtlichen Folgen mangelnder Qualität
 Anwendung von methodischen Herangehensweisen zur Messung des Spannungsfeldes aus Qualität, Kosten und Zeit
 Anwendung eines prozessorientierten Qualitätsmanagements |
| Inhalt: | Grundlagen zum Qualitätsmanagement
 Vorgehenskonzept zur Einführung eines Qualitätsmanagementsystems
 Rechtliche Aspekte des Qualitätsmanagements
 Demings Management-Programm |
<table>
<thead>
<tr>
<th>Methoden, Werkzeuge und Initiativen zum Qualitätsmanagement</th>
</tr>
</thead>
</table>

Studien-/ Prüfungsleistungen:
Prüfungsvorleistung: Das erfolgreiche Absolvieren der Semesteraufgabe ermöglicht den Studierenden die Teilnahme an der mündlichen Prüfung
Prüfung: mündliche Prüfung

Medienformen:

Literatur: Siehe http://bauhaus.cs.uni-magdeburg.de
Modulbezeichnung: Rechnerunterstützte Ingenieursysteme
engl. Modulbezeichnung: computer supported engineering systems

Kürzel: RUIS

Studiensemester: B.Sc. ab 3. Semester

Semesterlage:

Modulverantwortliche(r): Dekan der FIN
Dozent(in): Dr.-Ing. Martin Endig
Sprache: deutsch

Zuordnung zum Curriculum:
FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden

Lehrform / SWS: Vorlesung; Übung; Praktikum
Arbeitsaufwand:
Präsenzzeiten:
2 SWS Vorlesung
2 SWS Übung
Selbstständiges Arbeiten:
Umgang mit Anwendersystemen, Literaturvertiefung
150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:

Angestrebte Lernergebnisse:
Lernziele & erworbene Kompetenzen:
Verständnis entwickeln für den Einsatz modernster Informationstechnologien in der fertigenden Industrie,
Überblick zu Konzepten und Methoden der Aufbaustruktur und Ablauforganisation in Unternehmen
Kennen lernen von rechnerunterstützten Ingenieursystemen,
Entwicklung eines Verständnisses für die Wirkungsfelder der Teilsysteme und deren Umsetzung
Kennen lernen von Konzepten zur rechnerintegrierten Produktion, Ableitung von Erfahrungen aus vorgestellten und gehandhabten Informatiksystemen

Inhalt:
Konzepte zur Beschreibung der Aufbau- und Ablaufstruktur produzierender Unternehmen
Stand der Technik der rechnerintegrierten Produktion
Diskussion und Bewertung rechnerunterstützter Ingenieursysteme in einzelnen Produktionsbereichen (CAX, PPS, PDM...)
Integrationsansätze (CIM, PLM, EAI)
Vorstellung ausgewählter Beispiele
Studien-/ Prüfungsleistungen:

| Prüfungsvoraussetzung: Anmeldung und Teilnahme an Vorlesung und Übungen |
| Prüfung/ Schein: schriftlich (120 min) |

Medienformen:

| Literatur: |
| Eigenes Skript + diverse Spezialliteratur |
Modulbezeichnung: Recommenders
engl. Modulbezeichnung: Recommenders

Kürzel: RECSYS

Studiensemester: B.Sc. ab 4. Semester; M.Sc. ab 1. Semester
Semesterlage: Sommersemester

Modulverantwortliche(r): Lehrstuhl Angewandte Informatik / Wirtschaftsinformatik II
Dozent(in): Prof. Myra Spiliopoulou
Sprache: englisch

Zuordnung zum Curriculum:
FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden des Digital Engineering
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Learning Methods & Models for Data Science
FIN: M.Sc. DKE (alt) - Bereich Methods I
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik

Freigabe / Zuordnung zu interdisziplinären Studiengängen und Studiengängen außerhalb der FIN: s. Statuten des jeweiligen Studienganges und ggf. Exportvereinbarung

Lehrform / SWS: Vorlesung; Übung

Arbeitsaufwand:

- Präsenzzeiten:
 - 2 SWS Vorlesung
 - 2 SWS Übung

- Selbstständiges Arbeiten:
 - Vor- und Nachbereiten der Vorlesung
 - Entwicklung von Lösungen für Übungsaufgaben
 - Vorbereitung für die Abschlussprüfung

Kreditpunkte:

Bachelorstudiengänge: 5 CP = 150h = 56h Präsenzzeit + 94h selbstständige Arbeit
Masterstudiengänge: 6CP = 180h = 56h Präsenzzeit + 94h selbstständige Arbeit + 30h selbstständige Arbeit für einen zusätzliche Aufgabe, die während der Veranstaltung angekündigt wird.

Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen:
- Datenbanken
- Programmierparadigmen oder Software Engineering
- Data Mining / Machine Learning / vergleichbares Modul

| Angestrebte Lernergebnisse: | - Verständnis der betrieblichen Anforderungen an eine Empfehlungsmaschine
- Fachkenntnisse zu den Methoden, die diese Anforderungen erfüllen, vorwiegend (aber nicht nur) Methoden des maschinellen Lernens
- souveräner Umgang mit Fachliteratur |
|---------------------------|--|

| Inhalt: | - Empfehlungsmaschinen im CRM
- Komponenten von Empfehlungsmaschinen
- Lernverfahren für Empfehlungsmaschinen
- Verfahren zur Analyse von Inhalten & Meinungen |
|---------------------------|--|

| Studien-/ Prüfungsleistungen: | Vorleistungen:
Erfolgreiche Bearbeitung der Übungsaufgaben
Präsentationen von Ergebnissen
Modalitäten werden zum Veranstaltungsbeginn angegeben.
Prüfung: schriftlich |
|-----------------------------|--|

| Medienformen: Literatur: | Die Literaturrempfehlungen (Fachbücher und wiss. Artikel) werde als Teil des Foliensatzes angekündigt.
Die Literaturliste kann zusätzliche Fallstudien und weitere wissenschaftliche Arbeiten umfassen. Diese werden am Anfang des jeweiligen Veranstaltungsblocks bekannt gegeben. |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Regelungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Control systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur Systemtheorie und Regelungstechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Rolf Findeisen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Elektrotechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzeiten: 2 SWS Vorlesung 1 SWS Übung Selbstständiges Arbeiten: Lösen der Übungsaufgaben (vorbereitend vor der Übung) 90h = 3 SWS = 42h Präsenzzeit + 48h selbständiges Arbeiten</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>§</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik I-III, Signale und Systeme</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung: Aufgaben und Ziele der Regelungstechnik Mathematische Modellierung mit Hilfe von Differenzialgleichungen Verhalten linearer zeitinvarianter Systeme (Stabilität, Übertragungsverhalten) Analyse im Frequenzbereich Einfache Regelverfahren und Reglerentwürfe (PID, PI, loop-shaping)</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung: schriftlich (120 min)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. A. Kienle, FEIT-IFAT</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. A. Kienle, FEIT-IFAT</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Praktikum</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung
1 SWS Übung
Praktikumsversuch á 3 Stunden
Selbstständiges Arbeiten:
Nacharbeit Vorlesung/Versuch, Übungsaufgaben, Prüfungsvorbereitung |
| Kreditpunkte: | 3 |
| Voraussetzungen nach Prüfungsordnung: | Mathematische Grundlagen |
| Prüfungsaufgaben: | Vorlesungsteil Messtechnik |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | grundlegende Aufgaben/Begriffe der Regelungstechnik
Fähigkeit zur formalen Beschreibung und Analyse linearer Eingrößen-Regelsysteme
Fähigkeit zur Synthese linearer Eingrößen-Regelsysteme
Praktische Erfahrungen mit Regelkreisen |
| Inhalt: | Einführung: Aufgaben und Ziele der Regelungstechnik
Mathematische Modellierung mit Hilfe von Differenzialgleichungen
Verhalten linearer zeitinvarianter Systeme (Stabilität, Übertragungsverhalten)
Analyse im Frequenzbereich
Regelverfahren
Analyse und Entwurf von Regelkreisen
Praktikum: Experimentelle Erprobung von PIDRegelungsparametern |
| Studien-/ Prüfungsleistungen: | Übungsschein, Teilnahme am Praktikum, Klausur 90 min |
| Medienformen: | |
| Literatur: | |

Seite 484 **Inhaltsverzeichnis**
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Robust Geometric Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Robust Geometric Computing</td>
</tr>
<tr>
<td>ggf. Moduliniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Computervisualistik
FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: |
| Präsenzzeiten: |
| 2 SWS Vorlesung
2 SWS Frontalübungen und praktische Übungen |
| Selbstständige Arbeit: |
| Bearbeiten der Übungen und Nachbereitung der Vorlesungen 180h = 4 SWS = 56h Präsenzzeit + 124h selbstständige Arbeit |
| Kreditpunkte: | 6 | |
| Voraussetzungen nach Prüfungsordnung: | | |
| Empfohlene Voraussetzungen: | Grundkenntnisse der Algorithmischen Geometrie, Programmiersprache C++ |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Kenntnis der Rundungsfehlerproblematik beim geometrischen Rechnen.
Fähigkeit zur Vermeidung von Rundungsfehlerproblemen, beispielsweise durch verifiziertes numerisches und exaktes geometrisches Rechnen.
Softwarebibliotheken CGAL, LEDA, GMP, CORE |
| Inhalt: | Grundlagen der Gleitkommaarithmetik, Fehlerabschätzungen, Intervallarithmetik, exakte ganzzahlige und rationale Arithmetik, Gleitkommafilter, Methoden zum exakten Rechnen mit algebraischen Zahlen. |
| Studien-/Prüfungsleistungen: | Prüfungsvorleistung: s. Vorlesung
Prüfung: mündlich |
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Boissonnat (Ed.); Effective Computational Geometry</td>
</tr>
<tr>
<td></td>
<td>Mehlhorn, Yap; Robust Geometric Computation (in Vorbereitung)</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Robuste Messgrößenreglung</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Robuste Messgrößenreglung</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Ulrich Jumar (FEIT-IFAT)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Ulrich Jumar (FEIT-IFAT)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | Präsenzzeiten: wöchentliche Vorlesung 2 SWS, zweiwöchentliche Übungen 1 SWS
Selbständige Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten
3 SWS / 5 CP = 150h (42h Präsenzzeit + 108h selbständige Arbeit) |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Grundlagen der Regelungstechnik |
| Angestrebte Lernergebnisse: | Lernziele und zu erwerbende Kompetenzen:
| Inhalt: | Charakteristika und Beschreibung von Mehrgrößensystemen
Stabilitätsbetrachtung und Kopplungsanalyse
Hintergrund und Praktikabilität ausgewählter Entwurfsverfahren
Berücksichtigung von Modellunsicherheiten, Normabschätzungen
Analyse u. Synthese robuster Mehrgrößenregelung mit MATLAB |
<p>| Studien-/Prüfungsleistungen: | Mündliche Prüfung |
| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Schlüsselkompetenzen I&II</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Key Competencies I&II</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SchlüKo I / SchlüKo II</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Claudia Krull</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 56 h</td>
</tr>
<tr>
<td></td>
<td>Wintersemester: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Sommersemester: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten = 124 h</td>
</tr>
<tr>
<td></td>
<td>Hausaufgaben & Klausurvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP (bei SPO ab 10/2023)</td>
</tr>
<tr>
<td></td>
<td>(6 CP bei SPO bis 09/2023)</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Aufbau des Studiums und Studientechniken</td>
</tr>
<tr>
<td></td>
<td>Kommunikation und Zusammenarbeit</td>
</tr>
<tr>
<td></td>
<td>effektive und effiziente Lebensplanung</td>
</tr>
<tr>
<td></td>
<td>nach einem Arbeitsplan handeln</td>
</tr>
<tr>
<td></td>
<td>erfolgreiches Studieren</td>
</tr>
<tr>
<td></td>
<td>kreative Lösungen finden</td>
</tr>
<tr>
<td></td>
<td>sich und andere besser verstehen</td>
</tr>
<tr>
<td></td>
<td>sich in Wort und Schrift ausdrücken</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Studienplanung & erfolgreiches Studieren</td>
</tr>
<tr>
<td></td>
<td>Ziele & zielorientiertes Handeln</td>
</tr>
<tr>
<td></td>
<td>Zeitmanagement & Zeitplanung</td>
</tr>
<tr>
<td></td>
<td>Selbstständig denken und handeln</td>
</tr>
<tr>
<td></td>
<td>Werte und ethisches Handeln</td>
</tr>
</tbody>
</table>

Seite 489 Inhaltsverzeichnis
| Teams und Teamfähigkeit | Entrepreneurgeist & Initiative
| Diskussionsführung
| wissenschaftlichen Berichte und Präsentationen
| Digital Rights
| **Studien-/ Prüfungsleistungen:** | Benotet: Klausur, 120 min
| **Medienformen:** |
| **Literatur:** | Siehe www.sim.ovgu.de
<p>|</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Schlüsselkompetenzen I&II (dual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Key Competencies I&II</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>SchlüKo I / SchlüKo II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SchlüKo I / SchlüKo II</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td>Schlüsselkompetenzen I&II</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Schlüsselkompetenzen I&II</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Claudia Krull</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Kernfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 56 h</td>
</tr>
<tr>
<td></td>
<td>Wintersemester: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Sommersemester: 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten = 124 h</td>
</tr>
<tr>
<td></td>
<td>Hausaufgaben & Klausurvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP (bei SPO ab 10/2023)</td>
</tr>
<tr>
<td></td>
<td>(6 CP bei SPO bis 09/2023)</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Aufbau des Studiums und Studientechniken</td>
</tr>
<tr>
<td></td>
<td>Kommunikation und Zusammenarbeit</td>
</tr>
<tr>
<td></td>
<td>effektive und effiziente Lebensplanung</td>
</tr>
<tr>
<td></td>
<td>nach einem Arbeitsplan handeln</td>
</tr>
<tr>
<td></td>
<td>erfolgreiches Studieren</td>
</tr>
<tr>
<td></td>
<td>kreative Lösungen finden</td>
</tr>
<tr>
<td></td>
<td>sich und andere besser verstehen</td>
</tr>
<tr>
<td></td>
<td>sich in Wort und Schrift ausdrücken</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Studienplanung & erfolgreiches Studieren</td>
</tr>
<tr>
<td>Ziele & zielorientiertes Handeln</td>
<td>Zeitmanagement & Zeitplanung</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Selbstständig denken und handeln</td>
<td>Werte und ethisches Handeln</td>
</tr>
<tr>
<td>Teams und Teamfähigkeit</td>
<td>Entrepreneurgeist & Initiative</td>
</tr>
<tr>
<td>Diskussionsführung</td>
<td>wissenschaftlichen Berichte und Präsentationen</td>
</tr>
<tr>
<td>Digital Rights</td>
<td></td>
</tr>
</tbody>
</table>

Studien-/ Prüfungsleistungen:

Referat in Kooperation mit dem Praxispartner als Vorleistung
Benotet: Klausur, 120 min

Medienformen:

Literatur:

Siehe www.sim.ovgu.de
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Schlüsselkompetenzen III</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung</td>
<td>Key Competencies III</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Graham Horton</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Tutorien, Teamarbeit</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180 Stunden (56 h Präsenzzeit + 124 h selbständiges Arbeiten)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworrene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>fortgeschrittene Kenntnisse über Kommunikation</td>
</tr>
<tr>
<td></td>
<td>Zusammenarbeit</td>
</tr>
<tr>
<td></td>
<td>effektives Selbstmanagement</td>
</tr>
<tr>
<td></td>
<td>wissenschaftliches Arbeiten</td>
</tr>
<tr>
<td></td>
<td>wichtige Berufsfaktoren</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Wissenschaftliches Arbeiten III + IV</td>
</tr>
<tr>
<td></td>
<td>Persönliche Produktivität</td>
</tr>
<tr>
<td></td>
<td>Life Leadership</td>
</tr>
<tr>
<td></td>
<td>Problemlösungstechniken</td>
</tr>
<tr>
<td></td>
<td>Wertschöpfung und Kundennutzen</td>
</tr>
<tr>
<td></td>
<td>Innovation</td>
</tr>
<tr>
<td></td>
<td>Querdenken</td>
</tr>
<tr>
<td></td>
<td>Berufswahl</td>
</tr>
<tr>
<td></td>
<td>Meetings leiten</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung</td>
</tr>
<tr>
<td></td>
<td>Benotet: Klausur, 120 min</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Blog</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Siehe www.sim.ovgu.de</td>
</tr>
</tbody>
</table>
Modulbezeichnung:
Scientific Computing II

engl. Modulbezeichnung:
Scientific Computing II

ggf. Modulniveau:

Kürzel:
SC II

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester:
B.Sc. ab 4. Semester; M.Sc. ab 1. Semester

Semesterlage:
Wintersemester

Modulverantwortliche(r):
Juniorprofessur für Echtzeit-Computergraphik

Dozent(in):
Jun.-Prof. Dr. Christian Lessig

Sprache:
englisch

Zuordnung zum Curriculum:

FIN: B.Sc. CV	WPF Computervisualistik
FIN: B.Sc. CV	WPF Informatik
FIN: B.Sc. CV	Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INF	WPF Informatik
FIN: B.Sc. INF	Studienprofil - Computer Games
FIN: B.Sc. INF	Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INGINF	WPF Informatik
FIN: B.Sc. INGINF	Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. WIF	WPF Gestalten & Anwenden
FIN: B.Sc. WIF	WPF Gestalten & Anwenden - FIN SMK
FIN: M.Sc. CV	Bereich Informatik
FIN: M.Sc. CV	Bereich Computervisualistik
FIN: M.Sc. CV	Schlüssel- und Methodenkompetenzen
FIN: M.Sc. DIGIENG	Informatikgrundlagen für Ingenieure
FIN: M.Sc. DIGIENG	Methoden der Informatik
FIN: M.Sc. DKE	Learning Methods & Models for Data Science
FIN: M.Sc. DKE	Fundamentals of Data Science
FIN: M.Sc. INF	Bereich Informatik
FIN: M.Sc. INFINF	Bereich Informatik
FIN: M.Sc. INFINF	Schlüssel- und Methodenkompetenzen
FIN: M.Sc. VC	Visual Computing - Wahlpflichtfächer
FIN: M.Sc. VC	Schlüssel- und Methodenkompetenzen
FIN: M.Sc. WIF	Bereich Informatik
FIN: M.Sc. WIF	Schlüssel- und Methodenkompetenzen

Lehrform / SWS:
Vorlesung; Übung

Arbeitsaufwand:
2 SWS lecture, 2 SWS exercise and self-study

Kreditpunkte:
5 CP
Grading following study and examination regulations

Voraussetzungen nach Prüfungsordnung:
<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
<th>Linear algebra, an introduction to scientific computing (floating point numbers, numerical solution of linear systems, eigen decomposition, DFT/FFT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>The course provides an introduction to ordinary and partial differential equations and their discretization. It also considers questions such as consistency, stability and convergence with an emphasis on their practical relevance.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Introduction into ODEs, Initial value problems, well posed problems, Consistency, stability, convergence, Explicit and implicit time stepping methods, One-step and multi-step time stepping methods, Introduction to PDEs, Basis representations and Galerkin projection, Spectral methods and finite elements, Advection equation, Laplace equation, wave equations</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Passing the exam</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- L. N. Trefethen, Exploring Ordinary Differential Equations, SIAM, 2017</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Scientific Machine Learning for Simulations</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Scientific Machine Learning for Simulations</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SMLfS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Juniorprofessur für Echtzeit-Computergraphik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Lessig, Prof. Dr. Thomas Richter (FMA)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>3 Credit Points = 150 h (28h Präsenzzeit + 122h selbstständige Arbeit), Notenskala gemäß Prüfungsordnung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>none</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Recommended: Introductory course on neural networks, Scientific Computing I and II (or similar courses on numerics of ODEs and PDEs)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>In the seminar we will discuss recent papers from the scientific machine learning literature on the use of neural networks (and related machine learning techniques) for the simulation of physical systems. We will also cover the analysis of neural networks in this context.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Application of neural networks for the simulation of physical systems (and simulations in general) Mathematical analysis of neural networks, with a focus on simulations</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Presentation (potentially also results of implementation)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Board, slides, computer code</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Will be announced at the beginning of the term.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Scientific Writing</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Scientific Writing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Claudia Krull</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Temitope Ibidunni Akinloye</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>2 SWS Seminarteilnahme, Selbstandige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Knowledge about scientific writing</td>
</tr>
<tr>
<td></td>
<td>Capability to review scientific articles</td>
</tr>
<tr>
<td></td>
<td>Usage of web-based submission and review systems</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Literature citation and paraphrasing</td>
</tr>
<tr>
<td></td>
<td>Presentations</td>
</tr>
<tr>
<td></td>
<td>Review scientific articles</td>
</tr>
<tr>
<td></td>
<td>Argument formation</td>
</tr>
<tr>
<td></td>
<td>Knowledge and application of academic writing styles</td>
</tr>
<tr>
<td></td>
<td>Peer review assessment</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Seminar paper (Paper + Reviews) Presentation</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Scrum-in-Practice</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Scrum-in-Practice</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>SIP</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>B.Sc. ab 5. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semester:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Softwaretechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Frank Ortmeier, FIN-IKS</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Fundamentals
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. VC - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. WIF - Bereich Informatik
FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | 180h = 4 SWS = 56h Präsenzzeit + 224h selbständige Arbeit am Praktikumsprojekt |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | Software Engineering |
| Angestrebte Lernergebnisse: | Kenntnis der Projektmanagementmethode Scrum
Praktisches Anwenden von agilen Softwareentwicklungsmethoden
Erwerb praktischer Erfahrungen mittels Durchführung eines Projektes und Reflektion des Selbst- und Projektmanagement |
Inhalt:

Studien-/ Prüfungsleistungen:
Prüfung: wissenschaftliches Projekt

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Segmentation Methods for Medical Image Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Segmentation Methods for Medical Image Analysis</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Segmentation Methods for Medical Image Analysis</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SMMA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverste-he-n</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Klaus Tönnies</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:wöchentliche Vorlesungen: 2 SWS14-tägige Projekttreffen: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:Projektvorbereitung und - durchführung in kleinen ArbeitsgruppenVorbereitung einer ProjektpräsentationVor- und Nachbereitung des Vorlesungsstoffs180h (56h Präsenzzeit + 124h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundkenntnisse von Numerik und Linearen Algebra, Grundkenntnisse der Bild- oder Signalverarbeitung, Kompetenz zur Umsetzung mäßig komplexer Algorithmen in einer beliebigen, gängigen Programmiersprache</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td></td>
<td>Lernziele & zu erwerbende Kompetenzen: Kompetenz zur algorithmischen Lösung von Segmentierungsproblemen in medizinischen Bildern Fähigkeit zu Projektdurchführung zur Lösung eines Segmentierungsproblems Fähigkeit zur Präsentation und Verteidigung eigener Arbeitsergebnisse</td>
</tr>
<tr>
<td></td>
<td>Inhalt:</td>
</tr>
<tr>
<td></td>
<td>Segmentation as optimization problem</td>
</tr>
<tr>
<td></td>
<td>Gradient descent methods</td>
</tr>
<tr>
<td></td>
<td>Level set segmentation</td>
</tr>
</tbody>
</table>

Seite 501 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Graph-based segmentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trained segmentation & Deep Learning</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Prüfungsvorleistung ist erforderlich. Prüfung: mündlich</th>
</tr>
</thead>
</table>

| Medienformen: | |
|---------------||

<p>| Literatur: | http://wwwisg.cs.uni-magdeburg.de/bv/ |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Selected Chapters of IT Security 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Selected Chapters of IT Security 1</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>ITSEC 1</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>Schlüssel- und Methodenkompetenz - Wissenschaftliches Teamprojekt</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Seminar zu ausgewählten technischen Themen der IT Sicherheit, Vergabe eines anspruchvollen Themas zu selbständigen Bearbeitung und Lösung einer gestellten Aufgabe 2 SWS Präsenzzeiten und selbstständiges Arbeiten siehe Punkt „Kreditpunkte“ Alle Studiengänge außer DKE;M: 3 Credit Points = 90h (28 h Präsenzzeit + 62 h selbstständige Arbeit) DKE;M: 4 Credit Points = 120h (28 h Präsenzzeit + 92 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>DKE: 4</td>
<td></td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Sichere Systeme, Algorithmen und Datenstrukturen, Grundlagen der Technischen Informatik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Der/die Studierende soll im Schwerpunkt Sicherheit und Kryptologie innerhalb eines Seminars ergänzende und aktuellen Kenntnisse zu ausgewählten technischen Themen die IT-Sicherheit am Beispiel erlernen und erfahren, um befähigt zu sein IT Sicherheitsstrategien anzuwenden. Dabei soll er/sie ein eingegrenztes, anspruchvolles Thema selbständig theoretisch und praktisch bearbeiten und schriftlich dokumentieren.</td>
<td></td>
</tr>
</tbody>
</table>

| Studien-/ Prüfungsleistungen: | Prüfungsleistung / -form: Hausarbeit Weiterhin regelmäßige Teilnahme am Seminar, eine Zwischenpräsentation und eine Abschlusspräsentation |

| Medienformen: | |

<p>| Literatur: | Literatur siehe unter: http://omen.cs.uni-magdeburg.de/itiamsl/lehre/ |</p>
<table>
<thead>
<tr>
<th>Zeile</th>
<th>Inhaltsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulbezeichnung: Selected Chapters of IT Security 2</td>
</tr>
<tr>
<td></td>
<td>engl. Modulbezeichnung: Selected Chapters of IT Security 2</td>
</tr>
<tr>
<td></td>
<td>ggf. Moduliniveau: ITSEC 2</td>
</tr>
<tr>
<td></td>
<td>ggf. Untertitel:</td>
</tr>
<tr>
<td></td>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td></td>
<td>Studiensemester: M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td></td>
<td>Semesterlage:</td>
</tr>
<tr>
<td></td>
<td>Modulverantwortliche(r): Professur für Angewandte Informatik / Multimedia and Security Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td></td>
<td>Dozent(in): Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td></td>
<td>Sprache: englisch</td>
</tr>
<tr>
<td></td>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>Lehrform / SWS: Seminar</td>
</tr>
<tr>
<td></td>
<td>Arbeitsaufwand: Seminar zu ausgewählten organisatorischen, rechtlichen, sozialen und ethischen Themen der IT Sicherheit, Vergabe eines anspruchsvollen Themas zu selbstständiger Bearbeitung und Lösung einer gestellten Aufgabe</td>
</tr>
<tr>
<td></td>
<td>2 SWS</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeiten und selbstständiges Arbeiten siehe Punkt „Kreditpunkte“</td>
</tr>
<tr>
<td></td>
<td>Alle Studiengänge außer DKE;M: 3 Credit Points = 90h (28 h Präsenzzeit + 62 h selbstständige Arbeit)</td>
</tr>
<tr>
<td></td>
<td>DKE;M: 4 Credit Points = 120h (28 h Präsenzzeit + 92 h selbstständige Arbeit)</td>
</tr>
<tr>
<td></td>
<td>Kreditpunkte: 3</td>
</tr>
<tr>
<td></td>
<td>DKE: 4</td>
</tr>
<tr>
<td></td>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td></td>
<td>Empfohlene Voraussetzungen: Sichere Systeme, Algorithmen und Datenstrukturen, Grundlagen der Technischen Informatik</td>
</tr>
<tr>
<td></td>
<td>Angestrebte Lernergebnisse: Lernziele & erworbene Kompetenzen:</td>
</tr>
</tbody>
</table>
Der/die Studierende soll im Schwerpunkt Sicherheit und Kryptologie innerhalb eines Seminars ergänzende und aktuellen Kenntnisse zu ausgewählten organisatorischen sowie rechtlichen, sozialen und ethischen Themenschwerpunkten erlernen und die Fähigkeit erwerben, diese anwenden können. Dabei soll er/sie ein eingegrenztes, anspruchvolles Thema selbständig theoretisch unter Analyse von verschiedenen Lösungsalternativen bearbeiten und schriftlich dokumentieren.

Inhalt:
Aktuelle Herausforderungen und Lösungen der IT Sicherheit zu ausgewählten organisatorischen, rechtlichen, sozialen und ethischen Themen wie zum Beispiel aus: Sicherheitsmanagement, Standardisierung, Zertifizierung und Evaluation Rechtliche, ethische und sozial Aspekte der IT-Sicherheit Sicherheit im E-Business Fallstudien zur IT-Sicherheit

Studien-/ Prüfungsleistungen:
Prüfungsleistung / -form: Hausarbeit Weiterhin regelmäßige Teilnahme am Seminar, eine Zwischenpräsentation und eine Abschlusspräsentation

Medienformen:

Literatur:
Literatur siehe unter: http://omen.cs.uni-magdeburg.de/itiamsl/lehre/
Modulbezeichnung: Selected Chapters of IT Security 3

engl. Modulbezeichnung: Selected Chapters of IT Security 3

Kürzel: ITSEC 3

ggf. Untertitel: M.Sc. ab 1. Semester

Semesterlage: Prof. Dr.-Ing. Jana Dittmann

Dozent(in): Prof. Dr.-Ing. Jana Dittmann

Sprache: englisch

Zuordnung zum Curriculum:
- FIN: M.Sc. CV - Bereich Informatik
- FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen
- FIN: M.Sc. DIGIENG - Methoden der Informatik
- FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
- FIN: M.Sc. DKE - Applied Data Science
- FIN: M.Sc. DKE (alt) - Bereich Applications
- FIN: M.Sc. INF - Bereich Informatik
- FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen
- FIN: M.Sc. INGINF - Bereich Informatik
- FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen
- FIN: M.Sc. VC - Computer Science
- FIN: M.Sc. WIF - Bereich Informatik
- FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen

Schlüssel- und Methodenkompetenz - Wissenschaftliches Teamprojekt

Lehrform / SWS: Seminar

Arbeitsaufwand:
Seminar zu ausgewählten technischen Themen der IT Sicherheit, Vergabe eines anspruchvollen Themas zu selbständiger Bearbeitung und Lösung einer gestellten Aufgabe
4 SWS
6 Credit Points = 180h (28 h Präsenzzeit + 152 h selbstständige Arbeit)

Kreditpunkte: 6

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:
- Sichere Systeme, Algorithmen und Datenstrukturen, Grundlagen der Technischen Informatik

Angestrebte Lernergebnisse:
Lernziele & erworbene Kompetenzen:
Der/die Studierende soll im Schwerpunkt Sicherheit und Kryptologie innerhalb eines Seminares ergänzende und aktuellen Kenntnisse zu ausgewählten technischen Themen die IT-Sicherheit am Beispiel erlernen und erfahren, um befähigt zu sein IT Sicherheitsstrategien anzuwenden.
Dabei soll er/sie ein umfassendes, anspruchvolles Thema selbständig theoretisch und praktisch bearbeiten und schriftlich dokumentieren.

Inhalt:
- Aktuelle Herausforderungen und Lösungen der IT Sicherheit zu ausgewählten technischen Themen wie zum Beispiel aus:
 - System-, Netzwerk- und Anwendungssicherheit
 - Kryptologie
 - Mediensicherheit
 - Biometrische Systeme
 - Spezifikation und formale Verifikation sicherer Systeme

Studien-/Prüfungsleistungen:
- Prüfungsleistung / Form: Hausarbeit
- Weiterhin regelmäßige Teilnahme am Seminar, eine Zwischenpräsentation und eine Abschlusspräsentation

Medienformen:

Literatur:
Literatur siehe unter:
http://omen.cs.uni-magdeburg.de/itiams/lehre/
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Selected Chapters of IT Security 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Selected Chapters of IT Security 4</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>ITSEC 4</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Multimedia and Security Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik
FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen
Schlüssel- und Methodenkompetenz - Wissenschaftliches Teamprojekt |
| Lehrform / SWS: | Seminar |
| Arbeitsaufwand: | Seminar zu ausgewählten organisatorischen, rechtlichen, sozialen und ethischen Themen der IT Sicherheit, Vergabe eines anspruchvollen Themas zu selbständiger Bearbeitung und Lösung einer gestellten Aufgabe
4 SWS
6 Credit Points = 180h (28 h Präsenzzeit + 152 h selbstständige Arbeit) |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Sichere Systeme, Algorithmen und Datenstrukturen, Grundlagen der Technischen Informatik |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Der/die Studierende soll im Schwerpunkt Sicherheit und Kryptologie innerhalb eines Seminaires ergänzende und aktuellen Kenntnisse zu ausgewählten organisatorischen sowie rechtlichen, sozialen und ethischen Themenschwerpunkten erlernen und die Fähigkeit erwerben, diese anwenden können. |
Dabei soll er/sie ein umfassendes, anspruchvolles Thema selbständig theoretisch unter Analyse von verschiedenen Lösungsalternativen bearbeiten und schriftlich dokumentieren.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsleistung / -form: Hausarbeit Weiterhin regelmäßige Teilnahme am Seminar, eine Zwischenpräsentation und eine Abschlusspräsentation</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Literatur siehe unter: http://omen.cs.uni-magdeburg.de/itiamsl/lehre/</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Selected Topics in Image Understanding</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Selected Topics in Image Understanding</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>STIU</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverstehen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Praktische Informatik / Bildverarbeitung, Bildverstehen</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Data Processing for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>wöchentliche Vorlesungen: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>14-tägige Projekttreffen: 2 SWS</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Projektvorbereitung und -durchführung in kleinen Arbeitsgruppen</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung einer Projektpräsentation</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung des Vorlesungsstoffs 180h (56h Präsenzzeit + 124h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Empfohlene Voraussetzungen: Grundkenntnisse der Linearen Algebra, Grundlagen der Bildverarbeitung, gute Englischkenntnisse</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Kompetenz zur algorithmischen Lösung von fortgeschrittenen Themen der Digitalen Bildanalyse</td>
</tr>
<tr>
<td></td>
<td>Fähigkeit zu Projektdurchführung in wissenschaftlich-analytischem Umfeld</td>
</tr>
<tr>
<td></td>
<td>Kommunikation wissenschaftlicher Inhalte in englischer Sprache</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Feature generation, feature mapping and feature reduction</td>
</tr>
<tr>
<td></td>
<td>Geometric a-priori models for image understanding</td>
</tr>
<tr>
<td></td>
<td>Classification techniques</td>
</tr>
</tbody>
</table>

Seite 511 Inhaltsverzeichnis
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung ist erforderlich
| | Prüfung: mündlich
| Medienformen: |
| Literatur: | http://www.isg.cs.uni-magdeburg.de/bv/

Seite 512 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Seminar Computational Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Seminar Computational Intelligence</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>SCI</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SCI</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lehrstuhl für Computational Intelligence</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Sanaz Mostaghim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Lecture Time:</td>
</tr>
<tr>
<td></td>
<td>2 Hours per Week: Seminar</td>
</tr>
<tr>
<td></td>
<td>Individual Work Time 160h:</td>
</tr>
<tr>
<td></td>
<td>- Reading and Understanding of Provided Papers</td>
</tr>
<tr>
<td></td>
<td>- Research of Additional Papers</td>
</tr>
<tr>
<td></td>
<td>- Writing</td>
</tr>
<tr>
<td></td>
<td>- Presentation</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 Credits = 180 h =</td>
</tr>
<tr>
<td></td>
<td>20 h Lecture Time + 160 h Individual Work</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Students should have basic knowledge from the area of computational intelligence, like for instance Intelligent Systems, Machine Learning, Evolutionary Algorithms, Swarm Intelligence, Multi-objective Optimization.</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>- Capability to individually understand and research complex research topics</td>
</tr>
<tr>
<td></td>
<td>- Writing of Scientific Articles</td>
</tr>
<tr>
<td></td>
<td>- Presentation of Scientific Talks</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Computational Intelligence</td>
</tr>
<tr>
<td></td>
<td>- Machine Learning</td>
</tr>
<tr>
<td></td>
<td>- Methods of Robotik</td>
</tr>
<tr>
<td></td>
<td>- Evolutionary Algorithms</td>
</tr>
<tr>
<td></td>
<td>- Multi-agent Scenarios and Systems</td>
</tr>
<tr>
<td></td>
<td>- Optimization Algorithms</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Cumulative Examination as „oral presentation” consisting of:</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Introductory Lectures, Student Presentations</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Will be announced in the beginning of the lecture.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Seminar Managementinformationssysteme</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Seminar Management Information Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Kürzel: SemMIS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Seminare und Vorlesungen</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Verstehen & Gestalten</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Übung; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 56 h</td>
</tr>
<tr>
<td></td>
<td>2 SWS Seminar</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten = 124 h</td>
</tr>
<tr>
<td></td>
<td>Aufarbeitung des Themas</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung einer Präsentation</td>
</tr>
<tr>
<td></td>
<td>schriftliche Ausarbeitung des Themas</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Erarbeitung eines anspruchsvollen Themes</td>
</tr>
<tr>
<td></td>
<td>Mündliche Präsentation eines anspruchsvollen Themes</td>
</tr>
<tr>
<td></td>
<td>Schriftliche Dokumentation eines anspruchsvollen Themes</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Ausgewählte Themen zu Managementinformationssysteme</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung: -</td>
</tr>
<tr>
<td></td>
<td>Prüfung: Hausarbeit (Seminararbeit)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Webseite: http://bauhaus.cs.uni-magdeburg.de</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Seminar Predictive Maintenance</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Seminar Predictive Maintenance</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>PM</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Myra Spiliopoulou, Benjamin Noack</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Myra Spiliopoulou, Benjamin Noack</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Lecture Time:</td>
</tr>
<tr>
<td></td>
<td>2 Hours per Week: Seminar / Consultations</td>
</tr>
<tr>
<td></td>
<td>Individual Work Time 130h (Bachelor) / 160h (Master):</td>
</tr>
<tr>
<td></td>
<td>- Reading and Understanding of Provided Papers</td>
</tr>
<tr>
<td></td>
<td>- Research of Additional Papers</td>
</tr>
<tr>
<td></td>
<td>- Writing</td>
</tr>
<tr>
<td></td>
<td>- Presentation</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>Bachelor: 5 CP</td>
</tr>
<tr>
<td></td>
<td>Master: 6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Students should have knowledge of linear algebra and calculus and, ideally, some knowledge of signal processing and data analysis</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
</tbody>
</table>

Seite 517 Inhaltsverzeichnis
| Angestrebte Lernergebnisse: | - Independently research complex topics
| | - Write clear scientific articles
| | - Present informative and understandable scientific talks |
| Inhalt: | In this seminar, the participants will learn about
| | - challenges and methods for data acquisition in industrial processing
| | - data analysis tool in predictive maintenance
| | - process modeling, fault detection, and state prediction |
| Studien-/Prüfungsleistungen: | - Presentation
| | - Discussion
<p>| | - Scientific Article |
| Medienformen: | Introductory lectures, consultations, student presentations |
| Literatur: | Literature be announced in the seminar. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Seminar Robotik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Seminar Robotik</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SR</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Benjamin Noack</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Benjamin Noack, Christopher Funk</td>
</tr>
<tr>
<td>Sprache:</td>
<td>---</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar |
| Lehrform / SWS: | Seminar |
| Arbeitsaufwand: | 2 SWS pro Woche: Präsenzveranstaltungen / Konsultationen Selbstständiges Arbeiten: Bearbeiten und Präsentieren des gewählten Themas, Nachbereiten der Präsentationen (60 h) Als WPF mit 5 CP: Zusätzlich schriftliche Ausarbeitung (60 h) |
| Kreditpunkte: | 3 CP / 5 CP |
| Voraussetzungen nach Prüfungsordnung: | Grundkenntnisse in lineare Algebra und Analysis |
| Empfohlene Voraussetzungen: | Die Teilnehmenden lernen, ein gegebenes Thema selbstständig zu erarbeiten und den anderen Teilnehmenden in verständlicher Weise zu präsentieren. |
| Angestrebte Lernergebnisse: | Im Rahmen des Seminars werden ausgewählte Themen im Bereich der Robotik diskutiert und präsentiert. |
| Inhalt: | Studien-/ Prüfungsleistungen: -Wissenschaftlicher Vortrag
- Diskussion
- Handout bzw. wissenschaftliche Ausarbeitung |
| Medienformen: | --- |
Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Seminar: Text-Retrieval/Mining</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Seminar: Text-Retrieval/Mining</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TRM</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Data and Knowledge Engineering</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Andreas Nürnberger</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DKE - Applied Data Science FIN: M.Sc. DKE (alt) - Bereich Applications FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Time of attendance = 28 hours: lecture Independent work = 152 hours: pre- and post-work for lecture, literature research, practical task, submit paper of task</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Information Retrieval</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Enhance competence in the fundamentals of processing data with textual content. Applying Text Retrieval methods to solve relevant Retrieval tasks. Confrontation with significant data magnitudes and their resulting challenges. Working with adequate literature.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Selected topics in data/text processing from unification, normalization, indexing to Retrieval applied to a significant magnitude of data.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Successful implementation of a solution associated to a sub-problem in the Retrieval scenario and presentation of the result in form of a seminar-presentation and a written paper.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>PowerPoint, Whiteboard</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Service Engineering</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Service Engineering</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>SOA</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik/Softwaretechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. A. Schmietendorf</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Verstehen & Gestalten
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeit= 56h
2 SWS VL
2 SWS Übung
selbständige Arbeit = 124 h
Lösung von (praktischen) Übungsaufgaben |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | Software Engineering |
| Empfohlene Voraussetzungen: | Software Engineering |
| Angestrebte Lernergebnisse: | Grundverständnis service-orientierter Software-Systeme
Fähigkeiten zur Definition, Konzeption und Anpassung an SOA-Paradigmen
Fertigkeiten bei der Anwendung von Web-Service-Technologien |
| Inhalt: | Grundbegriffe von Architekturen industrieller Software-Systeme
SOA-basierte Strukturen und Paradigmen
Anwendungs- u. Entwicklungsaspekte
SOA auf der Basis von Web-Service-Technologien |
| Studien-/ Prüfungsleistungen: | mündliche Prüfung
Schein |
| Medienformen: | |
| Literatur: | Skriptum durch den Lehrenden bereitgestellt |

Seite 522 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Sichere Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Secure Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SISY</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Jana Dittmann, FIN-ITI</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jana Dittmann, FIN-ITI</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - Pflichtfächer
FIN: B.Sc. INGINF - Pflichtfächer
FIN: B.Sc. WIF - Anwenden
FIN: M.Sc. DIGIENG - Methoden der Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeit = 56h
2 SWS Vorlesung
2 SWS Übung
Selbstständige Arbeit = 94h
Lösung der Übungsaufgaben & Prüfungsvorbereitung150h = 4 SWS = 56h Präsenzzeit+ 94h selbstständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | „Einführung in die Informatik“
„Grundlagen der Theoretischen Informatik“
„Grundlagen der Technischen Informatik“ |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Fähigkeiten die Verlässlichkeit von IT-Sicherheit einzuschätzen
Fähigkeit zur Erstellung von Bedrohungsanalysen
Fähigkeiten zur Auswahl und Beurteilung von Sicherheitsmechanismen sowie Erstellung von IT-Sicherheitskonzepten |
| Inhalt: | IT-Sicherheitsaspekte und IT-Sicherheitsbedrohungen
Designprinzipien sicherer IT-Systeme
Sicherheitsrichtlinien
Ausgewählte Sicherheitsmechanismen |
| Studien-/ Prüfungsleistungen: | Regelmäßige Teilnahme an den Vorlesungen und Übungen:
Note: Prüfung (schriftlich, 120 Min, keine Vorleistungen) |
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Schein: Bekanntgabe der erforderlichen Vorleistungen in der Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Literatur siehe unter http://wwwiti.cs.uni-magdeburg.de/iti_amsi/lehre/</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Simulation dynamischer Systeme</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Simulation dynamischer Systeme</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Simulation dynamischer Systeme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Strackeljan, FMB-IFME</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Strackeljan, FMB-IFME</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: Vorlesung 2 SWS, Übung 1 SWS, 1 SWS Praktikum, Selbständiges Arbeiten: Nachbereitung der Vorlesung, selbständige Übungsarbeit, Bearbeitung mehrerer Projekte</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse zu Mechanische Schwingungen, Struktur- und Maschinendynamik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Kurze Wiederholung Grundlagen der räumlichen Dynamik Integrationsverfahren, Modellaufbereitung Modellierung von Reibung, verschiedene Anregungen harmonische und transiente Rechnungen Nichtlineare dynamische Systeme, Selbsterregung, Sprungphänomene</td>
</tr>
<tr>
<td>Behandlung ausgewählter prototypischen Anwendungen (Anstreifvorgänge, Rotore mit Rissen, spezielle Reibprobleme, Fahrdynamik, piezoerregte elastische Schwingsysteme Arbeiten mit verschiedenen Programmsystemen u.a. auch die Programme EMD, FERAN Programmierung von Schnittstellen zu diesem Programm</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorleistung: Erstellung eines Projektes</td>
<td></td>
</tr>
<tr>
<td>Prüfung: mündliche Prüfung</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Simulation Project</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Simulation Project</td>
</tr>
<tr>
<td>ggf. Modulkategorie:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SimProj</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Claudia Krull</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
| | FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - FIN SMK
| | FIN: B.Sc. INF - WPF Informatik
| | FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - FIN SMK
| | FIN: B.Sc. INGINF - WPF Informatik
| | FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - FIN SMK
| | FIN: B.Sc. WIF - WPF Gestalten & Anwenden
| | FIN: B.Sc. WIF - WPF Gestalten & Anwenden - FIN SMK
| | FIN: M.Sc. DIGIENG - Interdisziplinäres Teamprojekt
| | FIN: M.Sc. DKE - Applied Data Science
| | FIN: M.Sc. DKE (alt) - Bereich Applications |
| Lehrform / SWS: | Projekt |
| Arbeitsaufwand: | BSc - 150 Stunden (56 h Präsenzzeit + 94 h Projektarbeit)
| | MSc - 180 Stunden (56 h Präsenzzeit + 124 h Projektarbeit) |
| Kreditpunkte: | BSc 5; MSc 6 |
| Voraussetzungen nach | |
| Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Introduction to Simulation |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
| | Fähigkeit zur Team-Arbeit, Projektarbeit,
| | Meilensteinorientierung
| | Verantwortung, Führung, Delegation, Absprüngen von Aufgaben
| | in einem Team
| | Durchführung eines praxisnahes Simulationsprojektes
| | Ausarbeitung und Einhaltung von Erfolgs- und Qualitätskriterien |
| Inhalt: | Grundzüge des Projektmanagements und der Team-Arbeit
| | Umsetzung der Inhalte aus "Introduction to Simulation" in
| | einem realen Projekt. |
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung |

Seite 527 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Medienformen</th>
<th>Literatur</th>
</tr>
</thead>
</table>

Benoitet: Hausarbeit
Unbenotet: Bestehen der Hausarbeit
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Simulation und Entwurf leistungselektronischer Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Simulation und Entwurf leistungselektronischer Systeme</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Andreas Lindemann (FEIT-IESY) / Dr.-Ing. Reinhard Döbbelin (FEIT-IESY)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Andreas Lindemann (FEIT-IESY) / Dr.-Ing. Reinhard Döbbelin (FEIT-IESY)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: wöchentliche Vorlesung 2 SWS, zweiwöchentliche Übungen 1 SWS Selbständige Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten 3 SWS / 5 CP = 150h (42h Präsenzzeit + 108h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Leistungselektronik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Schaltungssimulation digitaler Systeme in der Leistungselektronik mit Anwendungsbeispielen Modellbildung bei leistungselektronischen Bauelementen Funktionsprinzip und Anwendung digitaler Messmittel bei der Entwicklung leistungselektronischer Systeme Möglichkeiten und Anwendung von Signalanalysessoftware Ausführung aktiver und passiver leistungselektronischer Komponenten</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Software Defined Networking</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Software Defined Networking</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SDN</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>FIN: Lehrstuhl Netzwerke und Verteilte Systeme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. David Hausheer</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Ingenieurinformatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Vorlesungen (2h pro Woche)</td>
</tr>
<tr>
<td></td>
<td>Theoretische und praktische Übungen (2h pro Woche)</td>
</tr>
<tr>
<td></td>
<td>Hausaufgaben (124h):</td>
</tr>
<tr>
<td></td>
<td>Weitere Studien</td>
</tr>
<tr>
<td></td>
<td>Umsetzung der Übungen</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung für die finale Prüfung</td>
</tr>
<tr>
<td></td>
<td>180h (56h Kontaktstunden + 124h Selbststudium)</td>
</tr>
<tr>
<td></td>
<td>Noten gemäss Prüfungsbestimmungen</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Die Vorlesung Computernetze wird empfohlen</td>
</tr>
</tbody>
</table>

Seite 531 Inhaltsverzeichnis
| Inhalt: | Der Kurs behandelt Themen aus dem Bereich Software Defined Networking:
| | SDN Architecture (Application, Control, Infrastructure Layer)
| | SDN Interfaces (North/South-bound vs. East/West-bound interface)
| | SDN Applications and Use Cases (e.g. Multicasting)
| | Network Virtualization and Slicing (e.g. FlowVisor)
| | Network Function Virtualization (NFV) and Network Service Chaining
| | SDN Security
| | Network Operating Systems and Languages
| | OpenFlow Controller (e.g. NOX, Beacon, etc.)
| | Hardware Switches (e.g. NEC IP8800, Pronto) vs. Software Switches (e.g. NetFPGA, OpenVSwitch)
| | SDN in Wireless Networks (e.g. OpenWRT)
| Studien-/Prüfungsleistungen: | Schriftliche Prüfung
| Medienformen: |
| Literatur: | Lehrbücher gemäß Ankündigung.
| | Folienskript der Vorlesung und Artikelkopien nach Bedarf.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Software Development Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Software Development Project</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SDP</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche (r):</td>
<td>Professur für Softwaretechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Frank Ortmeier</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Pflichtfächer
FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen
FIN: B.Sc. INF - Pflichtfächer
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen
FIN: B.Sc. INGINF - Pflichtfächer
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen
FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen |
<p>| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | 300h = 50h Präsenzzeit + 190h Projektarbeit + 60h selbständige Prüfungsvorbereitung |
| Kreditpunkte: | 10 |
| Voraussetzungen nach Prüfungsordnung: | keine |
| Empfohlene Voraussetzungen: | Einführung in die Informatik, Software Engineering + IT PM, Datenbanken |
| Angestrebte Lernergebnisse: | Kenntnisse über moderne Softwareentwicklungsprozesse, Kenntnisse über moderne Frameworks zur Softwareentwicklung insbesondere aus dem Webkontext, Praktische Erfahrung in der Softwareentwicklung von größeren Softwareprojekten, Entscheidungskompetenz zur Anwendung von verschiedenen Softwareentwicklungsmethoden zur Softwareentwicklung im industriellen und akademischen Kontext |
| Inhalt: | Softwareentwicklungsumgebung, Software (architektur) dokumentation, Versionierung und Continuous Integration, Automatisiertes Testen, Issue Tracking und Behandlung von Programmierfehlern, Codeanalyse und... |</p>
<table>
<thead>
<tr>
<th>Softwareentwicklungsprozesse inkl. Einsatz ML-basierter Unterstützungssysteme</th>
</tr>
</thead>
</table>
| Studien-/Prüfungsleistungen: | - Prüfung: mündliche Prüfungen zu einzelnen Meilensteinen
- Unbenoteter Leistungsnachweis: Bestehen der mündlichen Prüfungen |
<p>| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Software Engineering & IT-Projektmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Software Engineering & IT-Projectmanagement</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Thomas Wilde</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Thomas Wilde</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Vorlesung 2 SWS = 28h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>Übung 2 SWS = 28h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td>94h selbstständige Arbeit</td>
</tr>
<tr>
<td></td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>gesamt 150h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Einführung in die Informatik,</td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td>Algorithmen und Datenstrukturen</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Software Engineering:</td>
</tr>
<tr>
<td></td>
<td>Nach der Veranstaltung haben die Teilnehmer Wissen über den</td>
</tr>
<tr>
<td></td>
<td>gesamten Software Lebenszyklus von der Spezifikation über</td>
</tr>
<tr>
<td></td>
<td>Design, Entwicklung, Validierung und Wartung. Die Teilnehmer</td>
</tr>
<tr>
<td></td>
<td>kennen verschiedene Prozessmodelle und verstehen das</td>
</tr>
<tr>
<td></td>
<td>Zusammenspiel von Prozessaktivitäten in diesen. Grundlegendes</td>
</tr>
<tr>
<td></td>
<td>Wissen über Designrichtlinien und -muster kann widergegeben</td>
</tr>
<tr>
<td></td>
<td>werden. Anhand von praktischen Beispielen wird das erworbene</td>
</tr>
<tr>
<td></td>
<td>Wissen mit Hilfe aktueller Werkzeuge und Techniken</td>
</tr>
<tr>
<td></td>
<td>angewendet.</td>
</tr>
<tr>
<td></td>
<td>IT-Projektmanagement:</td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmer erwerben Kenntnisse über Methoden zum</td>
</tr>
<tr>
<td></td>
<td>Projektmanagement mit Bezug auf Softwareentwicklung.</td>
</tr>
<tr>
<td></td>
<td>Grundlegende Funktionsweisen von agilen Methoden können</td>
</tr>
</tbody>
</table>

Seite 535 Inhaltsverzeichnis
benannt werden. Werkzeuge und Methoden zum Projektmanagement werden angewandt.

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Software Engineering - Was ist das und wozu wird es gebraucht?</td>
</tr>
<tr>
<td>- Prozessmodelle: Wasserfall Modell, Inkrementelles Modell, Integration und Konfiguration</td>
</tr>
<tr>
<td>- Prozessaktivitäten: Spezifikation, Entwicklung, Validierung, Evolution</td>
</tr>
<tr>
<td>- Test & Debugging</td>
</tr>
<tr>
<td>- Agile Softwareentwicklung</td>
</tr>
<tr>
<td>- Tools & Werkzeuge</td>
</tr>
<tr>
<td>- Clean-Coding / Code-Conventions</td>
</tr>
<tr>
<td>- praktische Beispiele</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvorleistung erforderlich</td>
</tr>
<tr>
<td>Prüfung: schriftliche Klausur, 120 Minuten</td>
</tr>
<tr>
<td>Schein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Ian Sommerville - Software Engineering</td>
</tr>
<tr>
<td>Robert Marting - Clean Code: A Handbook of Agile Software Craftsmanship</td>
</tr>
</tbody>
</table>

Seite 536 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Software Engineering (SPO bis 9/2023)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SE</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. Thomas Wilde</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Thomas Wilde</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Pflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h = 4 SWS = 56 h Präsenzzeit + 94 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Algorithmen und Datenstrukturen, Modellierung</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Kenntnis und Anwendung verschiedener Entwicklungsprozesse</td>
</tr>
<tr>
<td></td>
<td>Erfahrung mit Techniken im Bereich des Use Case und Requirements Engineering</td>
</tr>
<tr>
<td></td>
<td>Software designrichlinien und –muster</td>
</tr>
<tr>
<td></td>
<td>Überblick über moderne Technologien/Techniken des SE</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung erforderlich</td>
</tr>
<tr>
<td></td>
<td>Prüfung: schriftliche Klausur, 120 Minuten</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Software Engineering for technical applications</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Software Engineering for technical applications</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SE4TA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Softwaretechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Frank Ortmeier, FIN-IVS</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 h = 4 SWS = 56 h Präsenzzeit + 94 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Verständnis der besonderen Herausforderungen bei der Softwareentwicklung für technische SystemeModellieren von Software-Anteilen von technischen Systemen modellbasiertes Software design mit SCADE</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Entwicklungsprozesse für Software in technischen SystemenModellieren mit SysML</td>
</tr>
<tr>
<td></td>
<td>Softwareentwicklung für kritische Systeme mit SCADE</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung erforderlich</td>
</tr>
<tr>
<td></td>
<td>Prüfung: mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Software Testing</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Software Testing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SWT</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>PD Dr.-Ing. Sandro Schulze</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>PD Dr.-Ing. Sandro Schulze</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. BiBalINF - WPF Informatik
FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Computer Science
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung; Projekt |
| Arbeitsaufwand: | 150 h overall \(\approx 44 \) class hours + 76 complementary reading and realization of exercises + 30 hours of exam preparation |
| Kreditpunkte: | Bachelor: 5CP
Master: 6CP |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Basic knowledge of software engineering, good programming skills (mandatory) |
| Angestrebte Lernergebnisse: | Knowledge and Understanding:Participants understand the most important testing techniques needed to build high quality software systems.
Participants can apply modern testing techniques to create high quality software systems.
Participants can reflect about limitations of current testing techniques, know when and when not to apply them, and are aware of latest research developments aimed at addressing these limitations.
Intellectual and Practical Skills:Students know about quality attributes, students identify appropriate testing type and technique for given problems and quality attributes, adapt and execute respective algorithms to apply a concrete testing |
Inhalt:

- Introduction to Test Process (& its relation to software development process) and testing terminology
- Quality attributes, maintainability, and testability
- Foundations of static & dynamic testing
- Code reviews and inspection
- Concrete dynamic testing techniques (black-box, white-box), including corresponding test design techniques and coverage criteria
- Test-driven design and development
- Model-based and state-based testing
- Design-by-contract
- Unit vs. integration testing

Studien-/Prüfungsleistungen:

- Written examination + labwork/assignments + quizzes
- Labwork/assignments must be solved in order to get the exam permission

Medienformen:

- Live coding, paper reading, online quizzes, discussion groups, guest lectures

Literatur:

- Basiswissen Softwaretest, Spillner et al.
- Additional literature (papers, Blogs, books) is provided during the lectures
Modulbezeichnung: Software-Development for Industrial Robotics

Engl. Modulbezeichnung: Software-Development for Industrial Robotics

Kürzel: SDIR

Dozent(in): Frank Ortmeier, FIN-IVS

Sprache: deutsch

Zuordnung zum Curriculum:
- FIN: B.Sc. INF - WPF Technische Informatik
- FIN: B.Sc. INGINF - WPF Technische Informatik
- FIN: M.Sc. CV - Bereich Informatik
- FIN: M.Sc. DigiENG - Methoden des Digital Engineering
- FIN: M.Sc. DigiENG - Methoden der Informatik
- FIN: M.Sc. DigiENG - Fachliche Spezialisierung
- FIN: M.Sc. DKE - Applied Data Science
- FIN: M.Sc. DKE (alt) - Bereich Applications
- FIN: M.Sc. INF - Bereich Informatik
- FIN: M.Sc. INGINF - Bereich Informatik
- FIN: M.Sc. INGINF - Bereich Ingenieurinformatik
- FIN: M.Sc. WIF - Bereich Informatik

Lehreform / SWS: Vorlesung; Übung

Arbeitsaufwand: 180h = 4 SWS = 56h Präsenzzeit + 224h selbständige Arbeit am Praktikumsprojekt

Kreditpunkte: 6

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:

Angestrebte Lernergebnisse:
Verständnis über Probleme der Robotikdomäne
Verständnis und Anwendbarkeit der mathematischen Hintergründe
Praktische Erfahrung in der Programmierung von industriellen Robotern auf Basis verschiedener Aufgabenstellungen

Inhalt:
Die Verwendung von industriellen Robotern steigt heutzutage rapide. 2014 stieg die erwartete Anzahl an industriellen Robotern um 27% zum Vorjahr. Der Hauptgrund liegt in deren Flexibilität, insbesondere ihre Fähigkeit eine Bandbreite an Aufgaben durchzuführen. In der Vorlesung "Software-Development for Industrial Robotics" wird eine Übersicht über diese Domäne gegeben als auch die mathematischen Hintergründe beleuchtet. Das Letztere behan-delt insbesondere die Idee Vorwärts- und der inversen Kinematik, Punkt-zu-Punkt-
Bewegungen, lineare Bewegungen, Trajektorien Planung, Erkennen von Singularitäten, Denavit-Hartenberg-Konvention, Rotations- und Translationsmatrizen. Das endgültige Projekt behandelt die Steuerung mittels einem kollisionsfreien Pfadplanner, KUKA youBot Kinematik, numerische Ansätze zum Lösen der inversen Kindematik etc.

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Prüfung: wissenschaftliches Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Softwareprojekt</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Software Project</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SWP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Softwareprojekt</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Softwareprojekt</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Softwareprojekt</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Gestalten</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 0 h (veranstaltungsspezifisch)</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten = 180 h</td>
</tr>
<tr>
<td></td>
<td>Projektarbeit in Teams</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Modul IT-Projektmanagement</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Teamarbeit (insbesondere Vergabe und Annahme von Verantwortung, Führung, Delegation und Absprache von Aufgaben, Vereinbarung von Zusammenarbeitskriterien)</td>
</tr>
<tr>
<td></td>
<td>Projektarbeit (insbesondere Vereinbarung von Zielen, Lasten- und Pflichtenheft, Planung von Meilensteinen und Arbeitspaketen, Projektdurchführung, Dokumentation und Präsentation eines Projektes und dessen Ergebnisse)</td>
</tr>
<tr>
<td></td>
<td>Erstellung eines Software-Paketes im Team</td>
</tr>
<tr>
<td></td>
<td>Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Fachliche Lehrziele sind angebotsspezifisch.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Durchführung eines Softwareentwicklungsprojektes im Team Anwendung der Inhalte des Moduls IT-Projektmanagement</td>
</tr>
</tbody>
</table>
Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Fachliche Inhalte sind angebotspezifisch.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benotet: Kumulativ: Durchführung, Dokumentation und Abnahme eines Softwareprojektes</td>
</tr>
<tr>
<td>Unbenotet: Bestehen der benoteten Leistungen</td>
</tr>
</tbody>
</table>

Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Studien-/Prüfungsleistungen sind Veranstaltungsspezifisch und werden zu Beginn der Veranstaltung bekanntgegeben.

<p>| Medienformen: |
| Literatur: |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Softwareprojekt (dual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Software Project (dual)</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SWP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Softwareprojekt
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Softwareprojekt
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Softwareprojekt
FIN: B.Sc. WIF - Gestalten |
| Lehrform / SWS: | Projekt |
| Arbeitsaufwand: | Präsenzzeiten = 0 h (veranstaltungsspezifisch)
Selbstständiges Arbeiten = 180 h
Projektarbeit in Teams |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Modul IT-Projektmanagement |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Teamarbeit (insbesondere Vergabe und Annahme von Verantwortung, Führung, Delegation und Absprache von Aufgaben, Vereinbarung von Zusammenarbeitskriterien)
Projektarbeit (insbesondere Vereinbarung von Zielen, Lasten- und Pflichtenheft, Planung von Meilensteinen und Arbeitspaketen, Projektdurchführung, Dokumentation und Präsentation eines Projektes und dessen Ergebnisse)
Erstellung eines Software-Paketes im Team und in Kooperation mit dem Praxispartner
Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Fachliche Lehrziele sind angebotsspezifisch |
<p>| Inhalt: | Durchführung eines Softwareentwicklungsprojektes im Team |</p>
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anwendung der Inhalte des Moduls IT- Projektmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Fachliche Inhalte sind angebotspezifisch.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benotet: Kumulativ: Durchführung, Dokumentation und Abnahme eines Softwareprojektes</td>
</tr>
<tr>
<td>Unbenotet: Bestehen der benoteten Leistungen</td>
</tr>
<tr>
<td>Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Studien-/ Prüfungsleistungen sind veranstaltungsspezifisch und werden zu Beginn der Veranstaltung bekanntgegeben.</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Softwareprojekt RIOT OS
engl. Modulbezeichnung: Softwareprojekt RIOT OS
ggf. Modulniveau: Softwareprojekt RIOT OS
Kürzel: RIOT-Lab
ggf. Untertitel: Sommersemester
Studiensemester: B.Sc. ab 4. Semester
Semesterlage: Sommersemester
Modulverantwortliche(r): Professur für Technische Informatik / Communicataion and Netwoked Systems
Dozent(in): Prof. Dr. Mesut Güneş
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Softwareprojekt
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Softwareprojekt
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Softwareprojekt
Lehrform / SWS: Projekt
Arbeitsaufwand: Präsenzzeit = 56 h
4 SWS Projektseminar
Selbstständige Arbeit = 124 h
Bearbeitung der Programmieraufgaben
Kreditpunkte: 6 CP
Voraussetzungen nach Prüfungsordnung: keine
Empfohlene Voraussetzungen: Technische Informatik 1Technische Informatik 2
ComputernetzeAlgorithmen und Datenstrukturen
Angestrebte Lernergebnisse: Tiefgehendes Verständnis von Betriebssystemen für eingebettete Systeme, bes. im Umfeld des Internets der DingeFähigkeit zur Anwendungsentwicklung für eingebettete SystemeTreiberentwicklung und SystementwicklungVerwendung von Versionsverwaltungssystemen
Inhalt: Einführung in Tools wie Git, Make, etc.Einführung in RIOT OSAnwendungsentwicklungMulti-ThreadierungTreiberentwicklungNetzwerkommunikation
Studien-/Prüfungsleistungen: Leistungen:
Regelmäßige Teilnahme am Projektseminar
Erfolgreiche Bearbeitung der Programmieraufgaben
Prüfung:Abschlusspräsentation
Medienformen: Wird in der Veranstaltung bekannt gegeben.

Seite 548 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Sozialwissenschaftliche Filmanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Film Analysis in the Social Sciences</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SWF</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lesske, Frank</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Lesske, Frank</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Seminar 4 SWS</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3-6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Kenntnisse der sozialwissenschaftlichen Medienanalyse, bes. Film und ComputerspielFähigkeiten zur kritischen Analyse von filmischen Mitteln und Vermittlungsformen hinsichtlich technischer und visueller Umsetzung</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>In den Seminaren dieses Moduls werden unter unterschiedlichen inhaltlichen Gesichtspunkten und gesellschaftlich relevanten thematischen Schwerpunktssetzungen Filme ausgewählt und auf inhaltliche Aussagen, Vermittlungsformen, Vermittlungsleistungen und deren technische und gestalterische Umsetzung hin untersucht.</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Vortrag mit Thesenpapier oder Präsentationje nach angestrebten CP zusätzlich schriftliche Hausarbeit bzw. mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>

Seite 549 Inhaltsverzeichnis
Monaco, James: Film verstehen: Kunst, Technik, Sprache, Geschichte und Theorie des Films und der neuen Medien; mit einem Lexikon der Fachbegriffe; Hamburg [u.a.] 2000
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Speicherprogrammierbare Antriebssteuerungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Speicherprogrammierbare Antriebssteuerungen</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Speicherprogrammierbare Antriebssteuerungen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dipl.-Ing. Andreas Bannack (FEIT-IESY)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dipl.-Ing. Andreas Bannack (FEIT-IESY)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Praktikum</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Elektrische MaschinenElektrische Antriebe 1 Regelungstechnik Geregelter elektrischer Antriebe</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele: Vermittlung von Grundkenntnissen zur speicherprogrammierbaren Antriebssteuerung Entwicklung von Fähigkeiten zum praktischen Umgang mit industriellen Steuerungen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Aufgaben und Einsatzgebiete von SPS-Steuerschaltungen für Asynchronmaschinen Binäre Steuerungstechnik SPS-Anlagen für Antriebssteuerungen Binäre Maschinen- und Anlagensteuerungen Programmierübungen an SPS-gesteuerten Antriebsanlagen Steuerung von Motion Control Anlagen Speicherprogrammierbare Antriebsregelungen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Spezifikationstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Introduction to Specification</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SPT</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Softwaretechnik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Frank Ortmeier, FIN-IVS</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik
FIN: B.Sc. INGINF - Pflichtfächer
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | 150 h = 4 SWS = 56 h Präsenzzeit + 94 h selbständige Arbeit |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Algorithmen und Datenstrukturen, Theoretische Informatik |
| Inhalt: | Formale versus informale SpezifikationSpezifikation, Validierung, Verifikation, Generierung Spezifikation abstrakter Datentypen Spezifikation von zeitlichen Abläufen und Prozessen, Anwendungsbeispiel: Protokollspezifikation Konkrete Spezifikationssprachen und Werkzeuge |
| Studien-/Prüfungsleistungen: | Prüfungsvorleistung erforderlich
Prüfung: mündliche Prüfung |
<p>| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Sprachverarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Speech Processing</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Kognitive Systeme / Sprachverarbeitung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Kognitive Systeme / Sprachverarbeitung</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Anwendungsfach - Bildinformationstechnik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten
2SWS (Vorlesung) + 1SWS Übung (optional)
Selbstständiges Arbeiten:
Vorlesungsnachbereitung, Literaturstudium
90h (28h Präsenzzeit in den Vorlesungen+ 62h selbständiges Arbeiten) |
| Kreditpunkte: | 3 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Kenntnisse analoger und digitaler Signalverarbeitung hilfreich |
| Angestrebte Lernergebnisse: | Lernziele & zu erwerbende Kompetenzen:
Vermittlung der grundlegenden Probleme und Methoden der automatischen Sprachverarbeitung mit Hidden-Markov-Modellen.
Der Teilnehmer versteht die Funktionalität der wesentlichen Module eines automatischen Sprachverarbeitungssystems und kann die Funktionsprinzipien mathematisch begründen.
Der Teilnehmer kann Anwendungen in DSPs und CPUs unterscheiden und die spezifischen Anforderungen nennen. Das gleiche gilt für die unterschiedlichen Anforderungen Kommandos, Diktieren, Dialog, Erkennen großen Vokabulars, Benutzeradaption.
In einem nachfolgenden Praktikum (optional) kann der Teilnehmer die einzelnen Module unter Anleitung |

Seite 554 **Inhaltsverzeichnis**
Inhalt:

Die einzelnen Inhalte sind:
- Überblick über Spracherkennungssysteme und -architekturen
- Von der physiologischen Sprachproduktion und -rezeption zum technischen Modell
- Sprachmodelle
- Sprachverarbeitung mit Digitalen Signalprozessoren
- Grundlagen digitaler Signalverarbeitung
- Merkmalsextraktion
- Wahrscheinlichkeitsrechnung und Schätztheorie
- Klassifikation
- Hidden Markov Modelle
- Großes Vokabular
- Sprachverstehen und Dialogsteuerung

Studien-/Prüfungsleistungen:

- Klausur (K 90) oder mündliche Prüfung
- Prüfungsvorleistungen gemäß Bekanntgabe

Medienformen:

Literatur:

www.kognitivesysteme.de
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Startup Engineering I</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Startup Engineering I</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SE-I</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Graham Horton</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>150 Stunden (56 h Präsenzzeit + 94 h selbständiges Arbeiten)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Die Teilnehmer kennen und verstehen die Erfolgsfaktoren von Startups, die Führung eines Startups nach der "Lean"-Philosophie und dabei verwendete Methoden und haben sie anhand vorgegebener Beispiele selbst angewandt.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Lean Startup Plausibilitätscheck des minimalen Geschäftsmodells Einschätzung des Marktpotenzials Problem-Solution-Fit und Product-Market-Fit Customer Journey Map Validierung von Gründungshypothesen</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfungsvorleistung Benotet: Hausarbeit Unbenotet: Bestehen der Hausarbeit</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Eric Ries: The Lean Startup</td>
</tr>
<tr>
<td>Diverse Internet-Quellen (werden in der Veranstaltung bekanntgegeben)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

Seite 557 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Startup Engineering II - Develop an MVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Startup Engineering II - Develop an MVP</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>SE-II</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Graham Horton</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik |
<p>| Lehrform / SWS: | Projekt |
| Arbeitsaufwand: | 180 Stunden (28 h Präsenzzeit + 152 h selbständiges Arbeiten) |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Programmierkenntnisse Erfolgreicher Abschluss eines eigenständigen Programmierprojektes |
| Angestrebte Lernergebnisse: | Die Teilnehmer verstehen die Rolle von Hypothese in der Vorbereitungsphase eines Startups und die Validierung dieser durch ein MVP. Die Teilnehmer haben Erfahrung in der Entwicklung eines MVP für ein Startup unter Verwendung einer aktuellen Technologie. |
| Inhalt: | Spezifikation, Erstellung und Test eines MVP zur Überprüfung einer Hypothese. |
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung: wird zu Beginn der Veranstaltung bekanntgegebenBenotet: Hausarbeit |
| Medienformen: | Individuelle Wahl der Teilnehmer |
| Literatur: | Internet-Recherchen. Anhaltspunkte werden gegeben. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Startup Engineering III – From Idea to Business</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Startup Engineering III – From Idea to Business</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SE-III</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Graham Horton</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen
FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen |
| Lehrform / SWS: | Vorlesung; Seminar; Projekt |
| Arbeitsaufwand: | 180 Stunden (56 h Präsenzzeit + 124 h Projektarbeit) |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Startup-Engineering I + II |
| Angestrebte Lernergebnisse: | Die Teilnehmer haben gelernt, ...
Wie man ein Startup nach dem "Lean"-Prinzip betreibt
Wie man ein wettbewerbsfähiges Geschäftsmodell entwickelt und validiert
Wie man Investorpräsentationen vorbereitet und hält
Wie man Produktspezifikation erstellt
Wie Arbeit im Gründerteam funktioniert |
| Inhalt: | Lean Startup Methode
Marktanalyse
MVP –Minimum Viable Product
Problem/Solution fit
Product/Market fit |
<p>| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung Benotet: Hausarbeit |
| Medienformen: | |
| Literatur: | Siehe www.sim.ovgu.de |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Steuerung großer IT-Projekte</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Steuerung großer IT-Projekte</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Computational Intelligence</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Karl Teille, Volkswagen AutoUni, Leiter des Instituts für Informatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Bearbeitung Hausarbeit, Nachbereitung Vorlesung</td>
</tr>
<tr>
<td></td>
<td>60h = 28h Präsenzzeit + 32h Selbstständiges Arbeiten</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verständnis der Bedeutung von Projekten in der berufl. Praxis</td>
</tr>
<tr>
<td></td>
<td>Unterschiede zwischen Projektarbeit und Linienarbeit kennen</td>
</tr>
<tr>
<td></td>
<td>Wirkung von Unternehmens- und Projektkultur auf den Projekterfolg erkennen</td>
</tr>
<tr>
<td></td>
<td>Klassische Projektmanagementdisziplinen kennen</td>
</tr>
<tr>
<td></td>
<td>Agile Projektmanagement Methoden kennen</td>
</tr>
<tr>
<td></td>
<td>Aspekte internationaler Projektarbeit bewerten können</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Definition von Projekttypen Projektziele im Magischen Quadrat Einflussgrößen der Projekt- und Unternehmenskultur</td>
</tr>
</tbody>
</table>

Seite 560 Inhaltsverzeichnis
| Projetarbeit am Beispiel des SW-Entwicklungsprozesses |
| Neun Disziplinen des Projektmanagements nach PMI |
| Auswirkung von Änderungen der Projektziele während der Projektlaufzeit |
| Aspekte agiler Projektarbeit |
| Aspekte internationaler Projektarbeit |

| Studien-/ Prüfungsleistungen: | Hausarbeit |

<p>| Medienformen: |
| Literatur: |
| Der Termin - Ein Roman über Projektmanagement. Tom DeMarco; HANSER; 1998 |
| Wien wartet auf Dich – Der Faktor Mensch im DV-Management. Tom deMarco, Timotthy Lister; HANSER; 1999 |
| Agiles Projektmanagement - Risikogesteuerte Softwareentwicklung. Christiane Gernert; HANSER: 2003 |
| Überleben im Projekt - 10 Projektfallen und wie man sie umschifft. Klaus D. Tumuscheit; Orell Füssli Verlag; 1999 |
| Projektmanagement mit System - Organisation, Methoden, Steuerung. Georg Kraus, Reinhold Westermann; Gabler; 1998 |
| Projektleiter-Praxis. Jürgen Hansel, Gero Lomnitz; Springer; 1999 |
| Paradigm Shift - The New Promise of Information Technology. Don Tapscott; McGraw-Hill; 1993 |
| Bärentango – Mit Risikomanagement Projekte zum Erfolg führen. Tom DeMarco, Timothy Lister; HANSER; 2003 |
| Drachentöter – Risikomanagement für Software-Projekte. Georg Erwin Thaller; HEISE; 2004 |
| Qualitätsmanagement in IT-Projekten - Planung, Organisation, Umsetzung. Sandra Bartsch-Beuerlein; Hanser; 2000 |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Steuerungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Discrete control systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Automatisierungstechnik und Modellbildung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Jürgen Ihlow</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Elektrotechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 1 SWS Vorlesung 1 SWS Übung Selbstständiges Arbeiten: Lösen der Übungsaufgaben (vorbereitend vor der Übung) 60h = 2 SWS = 28h Präsenzzeit + 32h selbständiges Arbeiten</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik, Elektrotechnik, Physik</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele und zu erwerbende Kompetenzen: Einführung in die Theorie diskreter Systeme und der zu ihrer Behandlung erforderlichen mathematischen Hilfsmittel Vermittlung von Fähigkeiten zum Entwurf und zur Realisierung kombinatorischer und sequenzielle Steuerungen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung Steuerung/ Regelung, Signale, kombinatorische und sequenzielle Steuerung Grundlagen der BOOLEschen Algebra Ein- und zweistellige BOOLEsche Funktionen, Darstellung BOOLEscher Funktionen, Rechengesetze, Normalformen, Ableitung BOOLEscher Funktionen Minimierungsverfahren</td>
</tr>
</tbody>
</table>
| Primimplikant, minimale Normalformen, Verfahren von Karnaugh, Näherungsverfahren von McCluskey | Entwurf kombinatorischer Steuerungen
Entwurfsschritte, Signaldefinitionen, Modellierung in Form einer Schaltbelegungstabelle, Minimierung, Strukturierung | Realisierung kombinatorischer Steuerungen
Kontaktschaltungen, kontaktlose Schaltungen
Grundlagen der Automatentheorie
Automatendefinition, Automatenmodelle, Automatentypen, Verfahren der Zustandsreduktion
Entwurf sequenzieller Steuerungen
Entwurfsschritte, Signaldefinition, Modellierung, Zustandskodierung, Zustandsreduktion | Realisierung sequenzieller Steuerungen
Steuerungen, freie Rückführungen, konzentrierte Speicherelemente, Speichertypen |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Prüfung: schriftlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leonhardt, E.: Grundlage der Digitaltechnik, Carl Hanser Verlag, München, 1984
Borgmeyer, J.: Grundlage der Digitaltechnik, Carl Hanser Verlag, München, 1997 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Strömungsmechanik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Strömungsmechanik I</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. habil. Dominique Thévenin</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. habil. Dominique Thévenin</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Verfahrenstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Student Conference</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Student Conference</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>StudConf</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Praktische Informatik / Datenbanken und Informationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Gunter Saake</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DigiEng - Human Factors</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DigiEng - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Three rounds of paper submission, two rounds of reviews, three presentations</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Knowledge about scientific writing</td>
</tr>
<tr>
<td></td>
<td>Capability to review scientific articles</td>
</tr>
<tr>
<td></td>
<td>Experiences with scientific conferences</td>
</tr>
<tr>
<td></td>
<td>Usage of web-based submission and review systems</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Scientific writing</td>
</tr>
<tr>
<td></td>
<td>Conference organization</td>
</tr>
<tr>
<td></td>
<td>Survey of research literature</td>
</tr>
<tr>
<td></td>
<td>Assessment of other student’s work</td>
</tr>
<tr>
<td></td>
<td>Final presentation in a conference-like event</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>seminar paper (Paper + Reviews)</td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>

Seite 565 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Swarm Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Swarm Intelligence</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>SI</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Intelligente Systeme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Sanaz Mostaghim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Learning Methods & Models for Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Computer Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>2 SWS Übungen</td>
</tr>
<tr>
<td>Selbstständige Arbeit:</td>
<td>Bearbeiten von Übungs- und Programmieraufgaben</td>
</tr>
<tr>
<td></td>
<td>180 h = 56 h Präsenzzeit + 124 h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Informatik (Algorithmen und Datenstrukturen, Maschinelles Lernen)</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Anwendung der Methoden der Schwarmintelligenz zur Problemlösung (Optimierung und verteilte Systeme) Befähigung zur Entwicklung der Schwarmintelligenzalgorithmen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in Schwarmintelligenz (Modellierung und Definitionen) Schwarmintelligenz in Optimierung (Modellierung, Ant Colony Optimization, Particle Swarm Optimization, multikriterielle Optimierung)</td>
</tr>
</tbody>
</table>

Seite 566 Inhaltsverzeichnis
| Schwarmintelligenz in dynamischen Umgebungen | Schwarmintelligenz für Gruppierung und Sortieraufgaben |
| Schwarmrobotik |

| Studien-/Prüfungsleistungen: |
| Zum Bestehen der Prüfung oder zum Erwerb eines Scheins sind folgende Leistungen zu erbringen: |
| - Regelmäßige Teilnahme und Mitarbeit in Vorlesung und Übung |
| - Erwerb der Zulassungsvoraussetzungen zur Klausur |
| - Bestehen der schriftlichen Prüfung, 120 Min. |
| Die genauen Zulassungsvoraussetzungen werden zum Anfang der Vorlesung, spätestens bis zum Ende der dritten Vorlesungswoche, auf der Webseite des Lehrstuhls bekannt gegeben. |

| Medienformen: |
| Literatur: |
| Eric Bonabeau, Marco Dorigo and Guy Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford University Press, 1999 |
| Andries Engelbrecht, Fundamentals of Computational Swarm Intelligence, Wiley 2006 |
| James Kennedy and Russel Eberhart, Swarm Intelligence, Morgan Kaufmann, 2001 |
| Zbigniew Michalewicz and David Fogel, How to solve it: Modern Heuristics, Springer, 2001 |
| Veyssel Gazi, Stability Analysis of Swarms, The Ohio State University, 2002 |
| Marco Dorigo and Thomas Stützle, Ant Colony Optimization, The MIT Press, 2004 |
Modulbezeichnung: System-on-Chip
engl. Modulbezeichnung: System-on-Chip
Kürzel:
ggf. Untertitel:
ggf. Modulniveau: System-on-Chip
Semesterbeginn: M.Sc. ab 1. Semester
Semesterlage: Wintersemester
Modulverantwortliche(r): Prof. Dr.-Ing. Thilo Pionteck (FEIT-IIKT)
Dozent(in): Prof. Dr.-Ing. Thilo Pionteck (FEIT-IIKT)
Sprache: deutsch
Zuordnung zum Curriculum: FIN: M.Sc. DIGIENG - Methoden des Digital Engineering
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. INGINF - Bereich Ingenieurwissenschaften
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand: Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, zweiwöchentliche Übungen 1 SWS
Selbstständiges Arbeiten: Nacharbeiten Vorlesung, Lösung Übungsaufgaben und Prüfungsvorbereitung
180 h (42 h Präsenzzeit + 138 h selbständige Arbeit)
Kreditpunkte: 6
Voraussetzungen nach Prüfungsordnung: Bachelor in Elektrotechnik, Mechatronik oder Informatik
Empfohlene Voraussetzungen:
Angestrebte Lernergebnisse: Lernziele und erworbene Kompetenzen:
Inhalt: Aufbau von System-on-Chips (SoCs) Intellectual Property Core (IP-Core) basierter Entwurf
Seite 568 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Aspekte der IT-Sicherheit</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Technical Aspects of IT-Security</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TAITS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Jana Dittmann</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INF - Studienprofil - ForensikDesign@Informatik
FIN: B.Sc. INGINF - WPF Informatik
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | 150h: Präsenzzeit = 56h, Selbstständige Arbeit = 94h |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | „Sichere Systeme“, Technische Informatik, Kommunikation und Netzwerke, „Algorithmen und Datenstrukturen“ |
| Angestrebte Lernergebnisse: | Lernziele:
Verständnis der besonderen Eigenschaften und Probleme bei hardwarenahen Sicherheitslösungen
(Kommunikationsprotokolle, Umgebungsabhängigkeit, Beschränkung der Ressourcen)
Kompetenzen:
Befähigung zum Entwurf und zur Realisierung angepasster Sicherheitslösungen, ausgehend von einem Anwendungsproblem |
| Inhalt: | Erarbeitung eines praxisrelevanten, hardwarenahen Anwendungsproblems aus Bereichen wie automotiver Sicherheit, IoT- oder Steuer- und Regelungstechnik
Einführung in die Sensortechnik und Kommunikations-technologietechnische Integrationsaspekte, Umsetzung ausgewählter der Inhalte aus „Sichere Systeme“ und „Algorithmen und Datenstrukturen“ |
| Studien-/Prüfungsleistungen: | Prüfungsform: Referat (Präsentation und Abschlussbericht) |

Seite 570 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
</table>
| Literatur: | Literatur siehe unter wwwiti.cs.unimasl.de/iti_amsl/lehre/,
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Technische Darstellungslehre</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Engineering Design Graphics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>---</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Beyer; FMB - IMK</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Beyer; FMB - IMK Weitere Lehrende: Dr. Träger, Dr. Schabacker; FMB-IMK</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Anwendungsfach - Konstruktion & Design</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Informatik I</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Principles of Computer Hardware</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TI-I</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Technische Informatik / Communication and Networked Systemss; Professur für Netzwerke und Verteilte Systeme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Technische Informatik / Communication and Networked Systemss; Professur für Netzwerke und Verteilte Systeme</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Kombinatorische SchaltnetzeSequentielle Schaltwerke Computerarithmetik Aufbau eines Rechners Befehlssatz und Adressierung Fließband- und Parallelverarbeitung</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Leistungen: Bearbeitung der Übungs- und Programmieraufgaben Prüfung: Klausur 120 Min.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Wird in der VL bekanntgegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Informatik II</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TI II</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Technische Informatik / Communication and Networked Systemss; Professur für Netzwerke und Verteilte Systeme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Technische Informatik / Communication and Networked Systemss; Professur für Netzwerke und Verteilte Systeme</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - WPF Informatik
FIN: B.Sc. INF - Pflichtfächer
FIN: B.Sc. INGINF - Pflichtfächer
FIN: B.Sc. WIF - WPF Gestalten & Anwenden |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS Vorlesung
2 SWS Übung
Selbstständiges Arbeiten:
Bearbeitung von Übungsaufgaben & Prüfungsvorbereitung
150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit. |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Technische Informatik I |
| Angestrebte Lernergebnisse: | Lernziele:
Vermittlung von Grundlagen zur Einordnung und zum Entwurf von Architekturen und Komponenten der Systemsoftware aus den Bereichen Betriebssysteme, Kommunikationssysteme und Netzwerkarchitekturen.
Kompetenzen:
Fähigkeit zur Bewertung und praktischen Umsetzung von Konzepten, Komponenten und Strukturen aus den oben angegebenen Bereichen auf einer systemnahen Software-schicht. |
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Entwurfsprinzipien und Abstraktionen</td>
</tr>
<tr>
<td></td>
<td>Systemressourcen und Aktivitätsstrukturen</td>
</tr>
<tr>
<td></td>
<td>Kommunikation und Synchronisation</td>
</tr>
<tr>
<td></td>
<td>Beispiele für Ressourcenverwaltung und Protokolle aus dem Bereich der Betriebs- und Netzwerkarchitekturen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Leistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regelmäßige Teilnahme an Vorlesungen und Übungen, Bearbeitung der Übungs- und Programmieraufgaben</td>
</tr>
<tr>
<td></td>
<td>Prüfung: Klausur 120 Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wird auf der Web-Seite der VL bekanntgegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Logistik</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Technical Logistics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Zadek, FMB-ILM</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Zadek, FMB-ILM; Weitere Lehrende: K. Hempel; FMB-ILM</td>
</tr>
<tr>
<td>Sprache:</td>
<td>---</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Mechanik 1</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Engineering Mechanics 1</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Juhre, FMB-IFME</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Juhre, FMB-IFME</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Mechanik 2/3</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Juhre, FMB-IFME</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Juhre, FMB-IFME</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technische Mechanik I</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Technische Mechanik I</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Jens Strackeljan, Prof. A. Bertram, FMB-IFME</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Jens Strackeljan, Prof. A. Bertram, FMB-IFME</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Ingenieurgrundlagen für Informatiker</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 3 SWS Vorlesung 3 SWS Übung selbstst. Arbeiten: Übungsaufgaben; Klausurvorbereitung 210 h (84h Präsenzzeit + 126 h s. Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>7</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Grundlagen der Statik: ebene und räumliche Kraftsysteme, Schnittlasten an Stab- und Balkentragwerken, Reibung und Haftung, Schwerpunktberechnung Grundlagen der Festigkeitslehre: Annahmen, Definition für Verformungen und Spannungen, Hooksches Gesetz, Zug- und Druck, Biegung; Stabilitätsprobleme</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Übungsschein; Klausur 120 min</td>
</tr>
</tbody>
</table>

Seite 580 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Telematik und Identtechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Telematik und Identtechnik</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Hon. Prof. Richter /ILM</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Hon. Prof. Richter /ILM</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeiten:</td>
<td></td>
</tr>
<tr>
<td>Vorlesung: 2 SWS</td>
<td></td>
</tr>
<tr>
<td>Übung: 1 SWS (14-tägig)</td>
<td></td>
</tr>
<tr>
<td>Selbstständiges Arbeiten:</td>
<td>Nachbereitung der Vorlesung und Übungen</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Fördertechnik (Master MB)</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Teilnahme an den Vorlesungen und Übungen; Praktikum im Galileo-Testfeld; Versuchslabor und Containerterminal Magdeburg. Schriftliche Prüfung.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Theoretische Elektrotechnik</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Theoretische Elektrotechnik</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Marco Leone (FEIT-IGET)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Marco Leone (FEIT-IGET)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten im SoSe:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung, 1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeiten im WiSe:</td>
</tr>
<tr>
<td></td>
<td>2 SWS Vorlesung, 1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Lösung der Übungsaufgaben und Prüfungsvorbereitung</td>
</tr>
<tr>
<td></td>
<td>240 h (84 h Präsenzzeit + 156 h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>GET 1 und 2 sowie GET 3</td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Vermittlung des Systems der Maxwellschen Gleichungen als Grundlage für das physikalische Verständnis und die mathematische Beschreibung elektrischer, magnetischer und elektromagnetischer Phänomene Systematische Behandlung der elektromagnetischen Felder und adäquater Berechnungsmethoden sowie Herstellung des Bezug zu realen Problemstellungen in den Bereichen der Elektrotechnik, Elektronik, Kommunikationstechnik Entwicklung von Fertigkeiten zur Lösung konkreter Aufgabenstellungen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Maxwellsche Gleichungen in Differential- und Integralform und die Ableitung allgemeiner Schlussfolgerungen sowie eine Systematik der elektromagnetischen Felder. Auf dieser Basis erfolgt danach die Behandlung der einzelnen Feldtypen. Elektrostatisches Feld, stationäres elektrisches Strömungsfeld, Magnetfeld stationärer Ströme, Quasistationäres elektromagnetisches Feld, Wellenfelder</td>
</tr>
</tbody>
</table>

Seite 584 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen</th>
<th>Klausur 180 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Theorie elektrischer Leitungen</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Theorie elektrischer Leitungen</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Theorie elektrischer Leitungen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. M. Leone, FEIT-IGET</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. M. Leone, FEIT-IGET</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbständiges Arbeiten: Übungsaufgaben, Prüfungsvorbereitung 120 h (42 h Präsenz + 78 h selbständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundlagen der Elektrotechnik I-III, Theoretische Elektrotechnik</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung: Leitungsgeführte elektromagnetische Wellen und Wellentypen.TEM-Wellen auf Leitungen: Ableitung der Differentialgleichungen und differentielles Ersatzschaltbild der Doppelleitung, Lösung im Zeit- und Frequenzbereich,</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Three-dimensional & Advanced Interaction</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Three-dimensional & Advanced Interaction</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>Three-dimensional & Advanced Interaction</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TAI</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>AG Visualisierung, AG Computerassistierte Chirurgie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Hansen, Prof. Dr.-Ing. habil. Bernhard Preim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Attendance times:</td>
</tr>
<tr>
<td></td>
<td>lecture: 2 semester hours per week</td>
</tr>
<tr>
<td></td>
<td>tutorial/seminar: 2 semester hours per week</td>
</tr>
<tr>
<td></td>
<td>Independent work:</td>
</tr>
<tr>
<td></td>
<td>Reworking of the lecture</td>
</tr>
<tr>
<td></td>
<td>Working on the seminar exercises</td>
</tr>
<tr>
<td></td>
<td>Exam preparation</td>
</tr>
<tr>
<td></td>
<td>180 h (2*28h attendance time + 124h independent work)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Interactive Systems lecture, User Interface Engineering lecture</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Understanding the nature and importance of future user interfaces and the challenges and problems associated with them</td>
</tr>
<tr>
<td></td>
<td>Getting to know, analyzing and evaluating technologies, interaction techniques and methods for the development of advanced user interfaces</td>
</tr>
<tr>
<td></td>
<td>Ability to select suitable technologies and interaction techniques in the field of three-dimensional and modern Post-WIMP user interfaces</td>
</tr>
<tr>
<td></td>
<td>Ability to critically analyze scientific literature and knowledge of scientific publishing</td>
</tr>
</tbody>
</table>
Ability to conduct own research on a postgraduate level in the field of advanced user interfaces

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Post-WIMP and Reality-based User Interfaces</td>
</tr>
<tr>
<td>3D-Interaction: Tasks, Devices, 3D-Widgets, 3D UIs</td>
</tr>
<tr>
<td>Augmented Reality Interaction</td>
</tr>
<tr>
<td>Pen-based Interaction Techniques and Sketching</td>
</tr>
<tr>
<td>Multitouch: Technologies, Gestures, Applications</td>
</tr>
<tr>
<td>Gestural Interaction: Tracking, Freehand Gestures</td>
</tr>
<tr>
<td>Tangible Interaction</td>
</tr>
<tr>
<td>Advanced Topics: Gaze-based Interaction, Organic Interfaces, Everywhere Interfaces</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Prüfung: Klausur 120 Min.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Powerpoint, Tafel, Video, Softwaredemonstrationen</th>
</tr>
</thead>
</table>

| Literatur: | Bowman, Kruijff, Laviola, Jr., Poupyrev: „3D User Interfaces: Theory and Practice“, Addison-Wesley, 2004
Müller-Tomfelde (Ed.): „Tabletops – Horizontal Interactive Displays“, Springer, 2010
Saffer: „Designing Gestural Interfaces“, O’Reilly Media, 2008
Shaer, Hornecker: „Tangible User Interfaces: Past, Present and Future Directions“. In Foundations and Trends in Human-Computer Interaction, 3 (1), 2010
Further references during the lecture and on the current website of the module (http://isgwww.cs.uni-magdeburg.de/wise/Studium/WS2010/VorlesungTAI/) |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Topics in Algorithmics</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Topics in Algorithmics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TinA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Theoretische Informatik / Algorithmische Geometrie</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Fundamentals of Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Fundamentals</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden der Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzeiten:</td>
</tr>
<tr>
<td></td>
<td>3 SWS Vorlesung + Präsentationen</td>
</tr>
<tr>
<td></td>
<td>1 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Arbeit:</td>
</tr>
<tr>
<td></td>
<td>Bearbeiten der Übungen und Nachbereitung der Vorlesungen, Vorbereiten der Präsentation</td>
</tr>
<tr>
<td></td>
<td>180h = 4 SWS = 56h Präsenzzeit + 124h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Grundkenntnisse in Algorithmen und Datenstrukturen und asymptotischer Analyse.</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Befähigung zum Finden asymptotisch effizienter Lösungen für algorithmische Probleme mit Hilfe von Methoden, die dem aktuellen Stand der Technik entsprechen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Entwurf und Analyse ausgewählter Algorithmen (variety from course to course)</td>
</tr>
</tbody>
</table>

Seite 590 **Inhaltsverzeichnis**
| Studien-/prüfungsvorleistung: | Prüfungsvorleistung: s. Vorlesung
| | Prüfung: mündlich
| Medienformen: |
| Literatur: |

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Trainingsmodul Schlüssel- und Methodenkompetenz (dual) (SPO bis 09/2023)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Training Module in Key Competencies (dual)</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TM SMK</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Trainingsmodul
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Trainingsmodul
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Trainingsmodul
FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Trainingsmodul |
| Lehrform / SWS: | Veranstaltungsspezifisch |
| Kreditpunkte: | 3 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |
| Inhalt: | Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Die Inhalte sind daher angebotsspezifisch. |

Seite 592 Inhaltsverzeichnis
Das Modul wird in den Studiengängen der FIN nicht benotet

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th>Veranstaltungsspezifisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Trainingsmodul Schlüssel- und Methodenkompetenz (SPO bis 09/2023)</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Training Module in Key Competencies</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TM SMK</td>
</tr>
<tr>
<td>ggf. Modulkategorie:</td>
<td></td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Trainingsmodul
FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Trainingsmodul
FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Trainingsmodul
FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Trainingsmodul |
| Lehrform / SWS: | Veranstaltungsspezifisch |
| Arbeitsaufwand: | 90 Stunden. Die Verteilung zwischen Präsenzzeiten und selbstständigem Arbeiten ist Veranstaltungsspezifisch |
| Kreditpunkte: | 3 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Anwendung und Training von Schlüssel- und Methodenkompetenzen. Hierzu können gehören:
Team- und Projektarbeit mündliche Präsentation
Bericht anfertigen
Zeit- und Selbstmanagement
Berufliche Orientierung
Wissenschaftliches Arbeiten |
| Inhalt: | Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Die Inhalte sind daher angebotspezifisch. |
| Studien-/ Prüfungsleistungen: | Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Studien-/ Prüfungsleistungen sind Veranstaltungsspezifisch und werden zu Beginn der Veranstaltung bekanntgegeben.
Das Modul wird in den Studiengängen der FIN nicht benotet. |
<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
<td>Veranstaltungsspezifisch</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Transaction Processing

engl. Modulbezeichnung: Transaction Processing

ggf. Modulniveau:

Kürzel: TP

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester: M.Sc. ab 1. Semester

Semesterlage: Wintersemester

Modulverantwortliche(r): Professur für Praktische Informatik / Datenbanken und Informationssysteme

Dozent(in): Prof. Dr. Thomas Leich

Sprache: englisch

Zuordnung zum Curriculum:

| FIN: M.Sc. CV - Bereich Informatik |
| FIN: M.Sc. DIGIENG - Methoden der Informatik |
| FIN: M.Sc. DIGIENG - Fachliche Spezialisierung |
| FIN: M.Sc. DKE - Data Processing for Data Science |
| FIN: M.Sc. DKE (alt) - Bereich Methods II |
| FIN: M.Sc. INF - Bereich Informatik |
| FIN: M.Sc. INGINF - Bereich Informatik |
| FIN: M.Sc. VC - Computer Science |
| FIN: M.Sc. WIF - Bereich Informatik |

Lehrform / SWS: Vorlesung; Übung

Arbeitsaufwand:

Präsenzzeiten:
- wöchentliche Vorlesungen 2 SWS
- wöchentliche Übungen 2 SWS

Selbstständiges Arbeiten:
- Übungsaufgaben & Prüfungsvorbereitung
- 180h (56h Präsenzzeit in den Vorlesungen & Übungen + 124h selbstständige Arbeit)

Kreditpunkte: 6

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen: Veranstaltung „Datenbanken“

Angestrebte Lernergebnisse:

Lernziele & erworbene Kompetenzen:
- Grundverständnis der Problematik d. Transaktionsverwaltung
- Kenntnisse von theoretischen Grundlagen
- Kenntnisse zur Algorithmen u. Verfahren zur Synchronisation
- Kenntnisse über Algorithmen und Verfahren zur Aufrechterhaltung der ACID-Eigenschaften

Inhalt:

- Transaktionskonzept
- Serialisierbarkeitstheorie

Seite 596 **Inhaltsverzeichnis**
<table>
<thead>
<tr>
<th>Synchronisationsverfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiederherstellung und Datensicherung</td>
</tr>
<tr>
<td>Transaktionsverwaltung in verteilten Datenbanksystemen</td>
</tr>
<tr>
<td>(Verteilte Synchronisation, Verteilt Commit, etc.)</td>
</tr>
<tr>
<td>Erweiterte Transaktionsmodelle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsvoraussetzungen: Anmeldung und Teilnahme an den Vorlesungen und Übungen</td>
</tr>
<tr>
<td>Prüfung/ Schein: mündlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Transport phenomena in granular, particulate and porous media
engl. Modulbezeichnung: Transport phenomena in granular, particulate and porous media

Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:

Studiensemester: M.Sc. ab 1. Semester
Semesterlage: Sommersemester
Modulverantwortliche(r): Prof. Tsotsas
Dozent(in): Prof. Tsotsas
Sprache: deutsch

Zuordnung zum Curriculum: FIN: M.Sc. DIGIENG - Fachliche Spezialisierung

Lehrform / SWS:
Arbeitsaufwand: Präsenzzeit: 42 Stunden / Selbststudium: 48 Stunden
Kreditpunkte: 3

Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen:

Angestrebte Lernergebnisse: Dispersed solids find broad industrial application as raw materials (e.g. coal), products (e.g. plastic granulates) or auxiliaries (e.g. catalyst pellets). Solids are in this way involved in numerous important processes, e.g. regenerative heat transfer, adsorption, chromatography, drying, heterogeneous catalysis. To the most frequent forms of the dispersed solids belong fixed, agitated and fluidized beds. In the lecture the transport phenomena, i.e. momentum, heat and mass transfer, in such systems are discussed. It is shown, how physical fundamentals in combination with mathematical models and with intelligent laboratory experiments can be used for the design of processes and products, and for the dimensioning of the appropriate apparatuses.

Master transport phenomena in granular, particulate and porous media
Learn to design respective processes and products
Learn to combine mathematical modelling with lab experiments

Inhalt: Transport phenomena between single particles and a fluid
Fluid beds: Porosity, distribution of velocity, fluid-solid transport phenomena
Influence of flow maldistribution and axial dispersion on heat and mass transfer
Fluidized beds: Structure, expansion, fluid-solid transport phenomena
| Mechanisms of heat transfer through gas-filled gaps |
| Thermal conductivity of fixed beds without flow |
| Axial and lateral heat and mass transfer in fixed beds with fluid flow |
| Heat transfer from heating surfaces to static or agitated bulk materials |
| Contact drying in vacuum and in presence of inert gas |
| Heat transfer between fluidized beds and immersed heating elements |

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>Exam: oral</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
<th></th>
</tr>
</thead>
</table>
Modulbezeichnung:
- Umweltmanagementinformationssysteme

engl. Modulbezeichnung:
- Umweltmanagementinformationssysteme

Kürzel:

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester:
- B.Sc. ab 1. Semester

Semesterlage:
- Sommersemester

Modulverantwortliche(r):
- Professur für Angewandte Informatik / Wirtschaftsinformatik - Managementinformationssysteme

Dozent(in):
- Professur für Angewandte Informatik / Wirtschaftsinformatik - Managementinformationssysteme

Sprache:
- deutsch

Zuordnung zum Curriculum:
- FIN: M.Sc. INF - Bereich Informatik
- FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik

Lehrform / SWS:
- Vorlesung; Übung

Arbeitsaufwand:
- Präsenzzeiten:
 - 2 SWS Vorlesung = 28h
 - 2 SWS Übung = 28h
- Selbstständiges Arbeiten:
 - Vor- und Nachbereitung Vorlesung
 - Entwicklung von Lösungen in der Übung
- 150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit

Kreditpunkte:
- 6

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:
- Methods and Tools for Management Information Systems

Angestrebte Lernergebnisse:
- Lernziele & zu erwerbende Kompetenzen:
 - Verständnis des Spannungsfeldes aus Umweltaspekten, umweltorientierter Leistung und Umweltinformation
 - Anwendung von methodischen Herangehensweisen zur Messung Umweltaspekten und umweltorientierter Leistung
 - Verständnis der rechtlichen Folgen mangelnder Umweltleistung
 - Anwendung von methodischen Herangehensweisen zur effizienten Erfassung, Verwaltung und Nutzung von Metadaten und Daten eines Umweltmanagements
 - Anwendung einer methodischen Herangehensweise zur Einführung Umweltmanagementinformationssystemen in Organisationen
| Inhalt: | Grundlagen zu Umweltmanagementsystemen | Gesetzliche und andere Forderungen des Umweltschutzes |
| | Methoden, Werkzeuge und Normen zu Umweltmanagementsystemen | Konzeption und Einführung von Umweltmanagement-informationssystemen |

| Studien-/ Prüfungsleistungen: | Bearbeitung der Übungsaufgaben | mündliche Prüfung |

<p>| Medienformen: | |
| Literatur: | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Usability und Ästhetik</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Usability and Aesthetic</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 4. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik – Managementinformationssysteme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Gestalten</td>
</tr>
<tr>
<td></td>
<td>WPF WLO BSc ab 5. Semester (Modul 4 CP), WPF WMB BSc ab 5. Semester (Modul 4 CP)</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten:</td>
</tr>
<tr>
<td></td>
<td>- 2 SWS Vorlesung</td>
</tr>
<tr>
<td></td>
<td>- 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>- Vor- und Nachbereitung Vorlesung</td>
</tr>
<tr>
<td></td>
<td>- Entwicklung von Lösungen in und für die Übung</td>
</tr>
<tr>
<td></td>
<td>150h = 4 SWS = 56h Präsenzzeit + 94h selbstständige Arbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Verständnis für die Ästhetik und das Design von Informations- und Kommunikationssystemen bzw. Informations- und Kommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Verständnis von Design als Schlüssel zur nachhaltigen und zeitgemäßen Umsetzung von Informations- und Kommunikationssystemen bzw. einer Informations- und Kommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Anwendung einer methodischen Herangehensweise zur Entwicklung einer nachhaltigen Designstrategie</td>
</tr>
<tr>
<td>Anwendung von Usability, User Experience und gutem Design für Informations- und Kommunikationssysteme bzw. Informations- und Kommunikationstechnik</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
<tr>
<td>Methoden des User Experience Design und Design Thinking für die Ideation Phase im Entwicklungsprozess von Produkten und Dienstleistungen</td>
<td></td>
</tr>
<tr>
<td>Designgeschichte von Informations- und Kommunikationsprodukten</td>
<td></td>
</tr>
<tr>
<td>Methoden zur Konzipierung und Realisierung einer Usability und User Experience</td>
<td></td>
</tr>
<tr>
<td>10 Thesen des guten Designs</td>
<td></td>
</tr>
<tr>
<td>Gutes Design für Informations- und Kommunikationssysteme bzw. Informations- und Kommunikationstechnik</td>
<td></td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td></td>
</tr>
<tr>
<td>Das erfolgreiche Absolvieren der Semesteraufgabe ermöglicht den Studierenden die Teilnahme an der Prüfung. Prüfung: schriftliche Prüfung (Klausur) jeweils im SoSe</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Siehe http://bauhaus.cs.uni-magdeburg.de</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Verfahrenstechnische Projektarbeit</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Verfahrenstechnische Projektarbeit</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Thermodynamik und Verbrennung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr.-Ing. Hermann Woche, Prof. Dr.-Ing. Eckehard Specht</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. INGINF - Ingenieurbereich Vertiefungen - Verfahrenstechnik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum; Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit: 28 Stunden, Selbststudium: 32 Stunden</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen: Erlernen von Gruppenarbeit und selbständigem Erarbeiten von verfahrenstechnischen Projektabläufen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Zur Herstellung eines vorgegebenen Produktes muss eine mögliche Verfahrenstechnik erarbeitet werden. Über das Produktverhalten sind an einer Laboranlage Untersuchungen durchzuführen.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Präsentation</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung: Virtuelle Inbetriebnahme
engl. Modulbezeichnung: Virtuelle Inbetriebnahme
ggf. Modulniveau: Virtuelle Inbetriebnahme
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: M.Sc. ab 1. Semester
Semesterlage:
Modulverantwortliche(r): Prof. Dr. Christian Diedrich, FEIT-IFAT
Dozent(in): Prof. Dr. Christian Diedrich, FEIT-IFAT
Sprache: deutsch
Zuordnung zum Curriculum: FIN: M.Sc. DIGIENG - Methoden des Digital Engineering
Lehrform / SWS: Vorlesung; Übung
Arbeitsaufwand:
 Präsenzzeiten: Vorlesungen 2 SWS; Übungen 1 SWS
 Selbstständiges Arbeiten: Nacharbeiten der Vorlesung; Lösung der Übungsaufgaben; Prüfungsvorbereitung
 120 h (42 h Präsenzzeit + 78 h selbstständige Arbeit)
Kreditpunkte: 5
Voraussetzungen nach Prüfungsordnung: Grundkenntnis in der Informatik und Softwareentwicklung
Empfohlene Voraussetzungen:
Angestrebte Lernergebnisse: Einordnung der Maschinen- und Anlagensimulation mit Schwerpunkt der virtuellen und hybriden Inbetriebnahme in die digitalen Planungs- und Betriebslebenszyklusphasenautomatisierungstechnischen Aspekte der virtuellen Inbetriebnahme Modellgrundlagen für die verwendeten Komponenten bei der virtuellen Inbetriebnahme Vermittlung der Integrationstechnologien in das PLM
Inhalt: In der frühen Planungs- und Fertigungsphase werden im Engineering für technische Systeme Simulationswerkzeuge zur Validierung und Absicherung des Entwurfs, zum Test der Steuerungsssoftware sowie zu Schulungszwecken für die Anwender eingesetzt. Die real nicht vorhandenen Systemkomponenten werden simulativ behandelt und werden deshalb als virtuelle bezeichnet. So ist ein schrittweises Vorgehen vom vollständig virtuellen bis zum vollständigen realen und funktionsfähigen technischen System möglich (hybride Inbetriebnahme). Die Simulation erfolgt im
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>interdisziplinären Umfeld zwischen Mechanik, Elektro- und Automatisierungstechnik.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Teilnahme an den Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
<td>Prüfung am Ende des Moduls, Notenskala gemäß Prüfungsordnung,</td>
</tr>
<tr>
<td></td>
<td>Punktvergabe nach schriftl. Klausur oder mündliche Prüfung</td>
</tr>
</tbody>
</table>

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Visual Analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Visual Analytics</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Visualisierung</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Bernhard Preim</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Computervisualistik
FIN: M.Sc. DIGIENG - Methoden des Digital Engineering
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung |
| Arbeitsaufwand: | Präsenzzeiten:
2 SWS wöchentliche Vorlesung, 2 SWS wöchentliche Übung
Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Bearbeiten der Übungsaufgaben, Prüfungsvorbereitung, schriftliche Ausarbeitung für Masterstudenten
150 h (2*28h Präsenzzeit + 94h selbstständige Arbeit), zzgl. 1 CP (Master) für schriftliche Ausarbeitung |
| Kreditpunkte: | Master: 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Visualisierung, Vorkenntnisse in der Datenanalyse, z.B. Intelligente Datenanalyse, Data Mining, Machine Learning, Künstliche Intelligenz |
| Angestrebte Lernergebnisse: | Lernziele und zu erwerbende Kompetenzen:
Diese Vorlesung vermittelt, wie große, hochdimensionale, partiell unzuverlässige und unvollständige Daten analysiert werden können unter Nutzung von Datenanalysetechniken und interaktiven Visualisierungen, die eng gekoppelt sind. Dabei werden die Eigenschaften und Parameter wichtiger Datenanalysemethoden erklärt und gezeigt, wie diese |

Inhalt:

- Einleitung: Potenzial und Anwendungsbereiche von Visual Analytics
- Visual Analytics auf Basis von Clustering
- Visual Analytics auf Basis von Subspace-Clustering und Bi-Clustering
- Visual Analytics mit Decision Trees
- Visual Analytics mit Assoziationsregeln
- Scatterplot-basierte Visualisierungen
- Visual Analytics von Ereignissequenzen
- Interaktive und Kooperative Methoden von Visual Analytics
- Visual Analytics im Gesundheitswesen

Studien-/Prüfungsleistungen:

- Prüfungsvorleistungen: Werden zu Beginn des Semesters bekannt gegeben.
- Prüfung: Klausur (120 Min.)

Medienformen:

- Powerpointpräsentation, Tafelnutzung, Videos

Literatur:

- J. J. Thomas, K. A. Cook (Hrsg.): Illuminating the path: The research and development agenda for visual analytics. IEEE Computer Society 2005
Modulbezeichnung: Visual Analytics in Health Care
engl. Modulbezeichnung: Visual Analytics in Health Care
ggf. Modulniveau:
Kürzel: VAHC
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: M.Sc. ab 1. Semester
Semesterlage: Wintersemester
Modulverantwortliche(r): Prof. Dr.-Ing. Bernhard Preim Dr. Gabriel Mistelbauer
Dozent(in): Prof. Dr.-Ing. Bernhard Preim Dr. Gabriel Mistelbauer
Sprache: englisch
Zuordnung zum Curriculum:
FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DIGIENG - Fachliche Spezialisierung
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer
FIN: M.Sc. WIF - Bereich Informatik
Lehrform / SWS: Seminar
Arbeitsaufwand: 3 credit points = 90 h (28 h attendance time + 62 h independent work), grading scale according to examination regulations
Kreditpunkte: 3
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen: Visualization, Data Mining, Visual Analytics or Information Visualization
Angestrebte Lernergebnisse: Learning objectives and competences to be acquired: This seminar teaches how combinations of data analysis (clustering, regression analysis, classification rules) can be combined with methods of interactive visualization, e.g. heat maps, scatterplots and time-based visualizations to solve problems in healthcare. The applications concern clinical medicine (decision support for physicians based on electronic health records), medical research, e.g. the recognition of undesirable drug effects, the area of public health, which is concerned, for example, with defining an adequate data-based reaction to a strong outbreak of an infectious disease, and epidemiology, which examines risk factors for the development of diseases on the basis of observation and cohort studies and thus develops approaches for the prevention of diseases. All the topics covered are based on real data. The presentations are also
intended to raise awareness of the fact that data quality is never perfect; missing and partially unreliable or at least inaccurate data are the basis of the analytical evaluation.

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Overview: Potential and applications of Visual Analytics in Healthcare</td>
</tr>
<tr>
<td>• Visual Analytics in Public Health</td>
</tr>
<tr>
<td>• Visual Analytics in Clinical Medicine</td>
</tr>
<tr>
<td>• Visual Analytics for Detecting Adverse Drug Effects</td>
</tr>
<tr>
<td>• Visual Analytics in Epidemiology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examinations: student talk, seminar paper (10 pages)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerPoint presentation, use of whiteboard, videos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workshop volumes of the IEEE Workshop Visual Analytics in Healthcare (since 2010), selected publications of other conferences / magazines in the fields of data analysis and visualization</td>
</tr>
</tbody>
</table>
Modulbezeichnung:
Visualization

engl. Modulbezeichnung:
Visualization

ggf. Modulniveau:

Kürzel:
VIS

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester:
B.Sc. ab 4. Semester; M.Sc. ab 1. Semester

Semesterlage:
Wintersemester

Modulverantwortliche(r):
Professur für Angewandte Informatik / Visualisierung

Dozent(in):
Prof. Dr. Bernhard Preim

Sprache:
englisch

Zuordnung zum Curriculum:

<table>
<thead>
<tr>
<th>FIN: B.Sc. CV</th>
<th>Pflichtfächer</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIN: B.Sc. INF</td>
<td>WPF Informatik</td>
</tr>
<tr>
<td>FIN: B.Sc. INGINF</td>
<td>WPF Informatik</td>
</tr>
<tr>
<td>FIN: B.Sc. WIF</td>
<td>WPF Gestalten & Anwenden</td>
</tr>
<tr>
<td>FIN: M.Sc. DIGIENG</td>
<td>Methoden der Informatik</td>
</tr>
<tr>
<td>FIN: M.Sc. DKE</td>
<td>Applied Data Science</td>
</tr>
<tr>
<td>FIN: M.Sc. DKE (alt)</td>
<td>Bereich Fundamentals</td>
</tr>
<tr>
<td>FIN: M.Sc. VC</td>
<td>Visual Computing - Pflichtfächer</td>
</tr>
<tr>
<td>FIN: M.Sc. VC</td>
<td>Visual Computing - Wahlpflichtfächer</td>
</tr>
</tbody>
</table>

Lehrform / SWS:
Vorlesung; Übung

Arbeitsaufwand:

- Presence:
 - 2 SWS Lecture
 - 2 SWS Exercise

 Individual work: Work on the exercises and follow-up of the lectures, exam preparation

Kreditpunkte:

- Bachelor: 5 credit points = 150h = 4 SWS = 56h attendance time + 94h independent work
- Master: 6 Credit Points = 180h = 4 SWS = 56h attendance time + 124h independent work

Grading scheme according to exam regulations

Voraussetzungen nach Prüfungsordnung:
none

Empfohlene Voraussetzungen:
Knowledge from the modules:
Computergraphics I, Mathematics I, II, III

Angestrebte Lernergebnisse:

Goals:
This lecture conveys basic knowledge about visualizing large data in a structured manner including interactive exploration of the data by means of visual interfaces.

Objectives:

 Jesús 611 Inhaltsverzeichnis
| Awareness of visualization goals, selection and assessment of visualization techniques |
| Application of basic principles of computer-assisted visualization |
| Adaptation of visualization algorithms for solving application problems |
| Evaluation of visualization techniques in terms of performance, scaleability |

Inhalt:

- Visualization goals and quality criteria
- Understanding of fundamentals of visual perception
- Overview about data structures in visualization
- Basic algorithms (isolines, color scales, diagramm techniques)
- Direct and indirect visualization of volume data
- Information visualization

Studien-/ Prüfungsleistungen:

- Prerequisites: s. lecture
- Exam: written examination 120 Min.

Medienformen:

- Powerpoint presentation, sketches, videos

Literatur:

Modulbezeichnung: Visuelle Analyse und Strömungen in medizinischen Daten
engl. Modulbezeichnung: Visual Analysis and Flow in Medical Data
ggf. Modulniveau:
Kürzel: VASMed
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: B.Sc. ab 4. Semester
Semesterlage: Sommersemester
Modulverantwortliche(r): Dr.-Ing. Sylvia Saalfeld (FIN-ISG)
Dozent(in): Dr.-Ing. Sylvia Saalfeld (FIN-ISG) Dr.-Ing. Philipp Berg (FVST-ISUT)
Sprache: deutsch
Zuordnung zum Curriculum: FIN: B.Sc. CV - WPF Computervisualistik
FIN: B.Sc. INF - WPF Informatik
FIN: B.Sc. INGINF - WPF Informatik
Lehrform / SWS: Vorlesung
Arbeitsaufwand: Präsenzzeiten: 4 SWS anwendungsorientierte Vorlesung
Selbständiges Arbeiten: Nacharbeiten der Vorlesungen und der vorgestellten Anwendungsbeispiele, Prüfungsvorbereitung oder Projektarbeit (bei geringer Teilnehmerzahl)
180h (56h Präsenzzeit + 124h selbständige Arbeit)
Kreditpunkte: 6
Voraussetzungen nach Prüfungsordnung:
Empfohlene Voraussetzungen:
Der zweite Teil der Lehrveranstaltung bezieht sich auf die visuelle Analyse medizinischer Datensätze, bspw. Computertomographie (CT) oder Magnetresonanztomographie (MRT) Daten. 3D Visualisierungen der Datensätze verbessern dabei die Diagnose bestimmter Krankheitsbilder, wie kardiovaskuläre Erkrankungen oder Krebs, ermöglichen die Therapieplanung komplexer Eingriffe und erlauben eine

Inhalt:

Teil 1: Medizinische Strömungen:
Vermittlung strömungsmechanischer Grundlagen
Anwendung auf medizinisch relevante Strömungsphänomene (u.a. Herz-Kreislauf-System, zerebrale Hämodynamik, Lungen- und Rachenströmungen)
Einführung in die numerische Strömungsmechanik
Identifikation von Chancen und Limitationen der Simulationstechniken für medizinische Strömungen

Teil 2: Visuelle Analyse medizinischer Daten
Einführung in die Visualisierung und Bildanalyse für medizinische Datensätze
Direkte Volumenvisualisierung mittels Transferfunktionen
Indirekte Volumenvisualisierung mittels Oberflächen
Visuelle Analyse medizinisch relevanter Erkrankungen (u.a. kardiovaskuläre Erkrankungen, Tumorerkrankungen)

Studien-/ Prüfungsleistungen: Mündliche Prüfung oder Projektpräsentation (bei geringer Teilnehmerzahl)

Medienformen: Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Visuelle Kommunikation für Digitale Medien</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Visual Communication for Digital Media</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 2. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Steffi Hußlein</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Steffi Hußlein, Mareike Gabele (M.A.)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Allgemeine Visualistik - Design</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Seminar</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>5 CP = 150 Std. (30 Std. Präsenz + 60 Std. selbstständiges Einarbeiten und Üben + 30 Std. Vorbereitung eines Referats + 30 Std. Erarbeiten eines Handouts in eigenem Layout)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Visuelle Kommunikation geht über das Interface als Styling Fläche hinaus. Herausforderungen liegen unter anderem in der</td>
</tr>
</tbody>
</table>

Die Veranstaltung setzt sich aus folgenden theoretischen und praktischen Inhaltsmodulen zusammen:
- Entwicklung der visuellen Kommunikation: Von den analogen Medien zu den digitalen Medien
- Grundlagen der visuellen Kommunikation
- Gestaltgesetze
- Wahrnehmungphysiologie und -psychologie
- Lesbarkeit von Text in digitalen Medien
- Digitale Farbe und Farbmischung
- Bildschirmraster und Bildorganisation
- Orientierung und Navigation in digitalen Informationsräumen
- Aufbereitung und Erstellung von digitalen, dynamischen Daten- und Informationsvisualisierungen

Studien-/Prüfungsleistungen: Entwurf + Referat + Handout

Medienformen:

Literatur:
Modulbezeichnung:
VLBA – Cloud DevOps Technologies

engl. Modulbezeichnung:
VLBA – Cloud DevOps Technologies

Kürzel:
VLBA-CDOT

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester:
M.Sc. ab 1. Semester

Semesterlage:
Wintersemester

Modulverantwortliche(r):
Prof. Dr. Klaus Turowski

Dozent(in):
Prof. Dr. Klaus Turowski

Sprache:
englisch

Zuordnung zum Curriculum:
- FIN: M.Sc. CV - Bereich Informatik
- FIN: M.Sc. DIGIENG - Informatikgrundlagen für Ingenieure
- FIN: M.Sc. DIGIENG - Methoden der Informatik
- FIN: M.Sc. DKE - Data Processing for Data Science
- FIN: M.Sc. DKE - Applied Data Science
- FIN: M.Sc. INF - Bereich Informatik
- FIN: M.Sc. INGINF - Bereich Informatik
- FIN: M.Sc. VC - Computer Science
- FIN: M.Sc. WIF - Bereich Informatik
- FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik

Lehrform / SWS:
Vorlesung; Übung

Arbeitsaufwand:
Präsenzzeiten = 42 h:
- 21 h Vorlesung
- 21 h Übung
Selbstständiges Arbeiten = 138 h:
- 138 h Bearbeiten mehrerer aufeinander aufbauender Hausarbeiten

Kreditpunkte:
6 Credit Points = 6*30 h = 180 h
(42 h Präsenzzeit + 138 h selbstständige Arbeit)

Notenskala gemäß Prüfungsordnung:

Voraussetzungen nach Prüfungsordnung:

Empfohlene Voraussetzungen:

Angestrebte Lernergebnisse:
Schaffung eines Überblicks über relevante Tools und Technologien für die Entwicklung cloudbasierter Systeme und Vermittlung erster Erfahrungen in deren Nutzung.

Inhalt:
Angesichts hochgradig vernetzter Anwendungen, Big Data und Cloud Computing, ist die sorgfältige Planung und Konstruktion von Architekturen und Landschaften der entsprechenden Informationssysteme wichtiger denn je. In vielen Fällen endet der Lebenszyklus eines Systems nicht mit der Auslieferung der Lösung, vielmehr sind der anschließende Betrieb, die

<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Hausarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>VLBA 1: Systemarchitekturen</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>VLBA 1: Systemarchitekturen</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>VLBA1</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Angewandte Informatik / Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Fachliche Spezialisierung</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 28 h Vorlesung / 28 h Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: 54 h Vor- und Nachbereitung Vorlesung</td>
</tr>
<tr>
<td></td>
<td>70 h Entwicklung eines Informationssystems in der Übung</td>
</tr>
<tr>
<td></td>
<td>6 x30h (56 h Präsenzzeit + 124 h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & zu erwerbende Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Erlernen von Techniken und Methoden der Komponenten-basierten Systementwicklung</td>
</tr>
<tr>
<td></td>
<td>Methoden zum Aufbau komplexer interorganisationaler betrieblicher Informationssysteme auf Grundlage der Service-orientierten Architektur</td>
</tr>
<tr>
<td></td>
<td>Erlangung von praktischen Fähigkeiten zur Entwicklung komplexer verteilter Informationssysteme</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Theorie der komponentenbasierten Systementwicklung Fachkomponenten, Frameworks, Komponenten-Lebenszyklen, CoBCoM-Architektur Architekturen von Systemlandschaften</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Beteiligung an einem Entwicklungsprojekt, mündliche Prüfung</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>VR und AR in industriellen Anwendungen</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>VR und AR in industriellen Anwendungen</td>
</tr>
<tr>
<td>Kürzel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Logistische Systeme</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Professur für Logistische Systeme</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Computervisualistik
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik |
| Lehrform / SWS: | Vorlesung; Übung; Praktikum |
| Arbeitsaufwand: | Vorlesung und vorlesungs begleitende Übung einschließlich eines Programmierpraktikums mit der VDT-Plattform des Fraunhofer IFF, selbständiges Bearbeiten der Übungsaufgaben als Voraussetzung zur Prüfungszulassung Präsenzzeiten
Wöchentliche Vorlesungen 2 SWS
Wöchentliche Übungen 2 SWS
Selbständiges Arbeiten, Bearbeiten der Übungsaufgaben, Nachbereitung der Vorlesungen, Prüfungsvorbereitung
180 h (56 h Präsenzzeit + 124 h selbständige Arbeit) |
| Kreditpunkte: | 6 |

| Voraussetzungen nach Prüfungsordnung: | Grundkenntnisse der Computergraphik |

Angestrebte Lernergebnisse:
Lernziele & zu erwerbende Kompetenzen
| Inhalt: | Überblick über Einsatzmöglichkeiten von VR-Anwendungen in unterschiedlichen Branchen
Überblick über marktübliche VR/AR-Hardware/Software
Erstellung einfacher VR-Modelle mit einem 3D-Modellierungssystem
Datenübernahme aus kommerziellen CAD-Systemen
Erstellung von Szenarien mit dem Autorensystem der VDT-Plattform des Fraunhofer IFF
Erstellung eigener VR-Anwendungen am Beispiel der Grafikbibliothek OpenSG sowie der VDT-Plattform
Erstellung von AR-Anwendungen mit einem AR-Toolkit |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
</tbody>
</table>
Modulbezeichnung: VR/AR-Technologien für die Produktion
engl. Modulbezeichnung: VR/AR-Technologien für die Produktion
ggf. Modulniveau: VR/AR-Technologien für die Produktion
Kürzel:
ggf. Untertitel:
ggf. Lehrveranstaltungen:
Studiensemester: M.Sc. ab 1. Semester
Semesterlage:
Modulverantwortliche(r): FMB-ILM, Prof. Schenk, Steffen Masik
Dozent(in): Hon. Prof. Schreiber, Dr. Schumann, FMB-ILM
Sprache: deutsch
Zuordnung zum Curriculum: FIN: M.Sc. CV - Bereich Anwendungen / Geisteswissenschaftliche Grundlagen
Lehrform / SWS: Vorlesung; Übung
Kreditpunkte: 5 Master CV: 6
Voraussetzungen nach Prüfungsordnung: Grundlagen der Fertigungslehre Grundlagen der Konstruktionstechnik
Empfohlene Voraussetzungen:
Inhalt: Einsatzszenarien am Beispiel des Produktionslebenszyklus; Überblick über VR/AR-HardwareSoftwarebestandteile VR/AR-Systeme VR-basierte Experimentierplattformen zum Planen, Testen, Betreiben von Produktionstechnik
Studien-/Prüfungsleistungen: Prüfung: Klausur K90
Medienformen:
Literatur: Skript: Schreiber, W.; Zimmermann, P.,(Hrsg.): Virtuelle Techniken im industriellen Umfeld
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Wahlpflichtfach FIN Schlüssel- und Methodenkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Elective Course in Method and Key Competencies</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WPF FIN-SMK</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 6. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Dieses Modul kann durch unterschiedliche Lehrveranstaltungen implementiert werden. Die fachspezifischen Inhalte sind angebotsspezifisch.</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Studien-/ Prüfungsleistungen sind Veranstaltungsspezifisch und werden zu Beginn der Veranstaltung bekanntgegeben.</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Werkzeuge für das wissenschaftliche Arbeiten</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Tools for Scientific Work</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WWA</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Michael Kuhn</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Michael Kuhn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Trainingsmodul</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Trainingsmodul</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Trainingsmodul</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Trainingsmodul</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenz: 3 SWS (42h)</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Nachbereiten der vorgestellten Inhalte, weitergehende Beschäftigung mit den Werkzeugen (48h)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Die Teilnehmenden lernen, mit den vorgestellten Werkzeugen umzugehen und damit effektiv zu arbeiten.</td>
</tr>
</tbody>
</table>

Inhalt:
Für die wissenschaftliche Arbeit werden heutzutage eine Vielzahl an Werkzeugen eingesetzt, die Wissenschaftlerinnen und Wissenschaftlern die Arbeit erleichtern können. Dafür ist es allerdings notwendig, die Stärken und Schwächen der jeweiligen Werkzeuge zu kennen und mit deren Funktionsweise vertraut zu sein.
Im Trainingsmodul werden wir uns mit den wichtigsten Werkzeugen für das wissenschaftliche Arbeiten auseinander setzen. Dazu zählen unter anderem die Bedienung der Kommandozeile, die Versionsverwaltung mit Git, die Entwicklung von Scripten zur Automatisierung, das Plotten von Ergebnissen, sowie die Arbeit mit LaTeX zum Schreiben von...
<table>
<thead>
<tr>
<th>Studien-/ Prüfungsleistungen:</th>
<th>Aktive und erfolgreiche Teilnahme am Präsenzteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Wissenschaftliches Individualprojekt</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Wissenschaftliches Individualprojekt</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td>WIP</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WIP</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Professur für Simulation</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Wird von unterschiedlichen Hochschullehrern der FIN angeboten</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>für die Masterstudiengänge</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Angeleitetes wissenschaftliches Individualprojekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>180h Selbststudium und Projektarbeit</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Angebotsspezifisch</td>
</tr>
</tbody>
</table>
| Angestrebte Lernergebnisse: | Lernziel:
In diesem Modul erwerben Studierende durch angeleitetes wissenschaftliches Arbeiten Fachwissen auf einem Teilgebiet der Informatik. Dies erfolgt durch Studium der Fachliteratur und durch originäre wissenschaftliche Arbeit.
Erworbene Kompetenzen:
Selbstständiges und angeleitetes wissenschaftliches Arbeiten, z.B.:
| Inhalt: | Angebotsspezifisch |
| Studien-/ Prüfungsleistungen: | Wissenschaftlicher Vortrag und Ausarbeitung |
| Medienformen: | |

Seite 629 Inhaltsverzeichnis
<p>| Literatur: | Angebotsspezifisch |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Wissenschaftliches Rechnen IV: Tensoren, Differentialformen und Vektoranalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WRIV</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 1. Semester; M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Juniormprofessur Echtzeit-Computergraphik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Lessing</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Computervisualistik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Fundamentals of Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzzeiten: 2 SWS Vorlesung / 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten: Nacharbeiten der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Lösen der Übungsaufgaben: 180 h (56h Präsenzzeit + 124h selbstständige Arbeit)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 CP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Sichere Kenntnisse der linearen Algebra</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Tensoren und multi-lineare Algebra</td>
</tr>
<tr>
<td></td>
<td>Differentialformen, de Rahm Komplex, äußere Ableitung, Lie</td>
</tr>
<tr>
<td></td>
<td>Ableitung, Hodge dual</td>
</tr>
<tr>
<td></td>
<td>Formulierung von Vektoranalyse mit Differentialformen</td>
</tr>
<tr>
<td></td>
<td>Ggf. Erweiterung der Konzepte auf Mannigfaltigkeiten</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Mündliche Prüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Folien, Beispielprogramme</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Wissenschaftliches Rechnen V: Strukturerhaltende Simulationen und Geometrische Mechanik</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WR V</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Juniorprofessur für Echtzeit-Computergraphik</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. Christian Lessig</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DIGIENG - Methoden des Digital Engineering</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Visual Computing - Wahlpflichtfächer</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung / 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstandiges Arbeiten: Nacharbeiten der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Lösungen der Übungsaufgaben</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6 Credit Points = 180 h (56h Präsenzzeit + 124hselbstständige Arbeit)</td>
</tr>
<tr>
<td></td>
<td>Notenskala gemäß Prüfungsordnung</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Stark empfohlen: Wissenschaftliche Rechnen IV;</td>
</tr>
<tr>
<td></td>
<td>Empfohlen: Wissenschaftliche Rechnen II</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>The course provides an introduction to structure preserving numerical simulations that respect the invariants of physical systems, for example conserve energy or momentum. It also provides the necessary background from geometric mechanics.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>- Variational and Hamiltonian formulation of mechanical systems</td>
</tr>
<tr>
<td></td>
<td>- Variational structure preserving integrators</td>
</tr>
<tr>
<td></td>
<td>- Symplectic integrators</td>
</tr>
<tr>
<td></td>
<td>- Mechanical systems with symmetry, reduction and numerical integrators for these systems</td>
</tr>
</tbody>
</table>

Seite 633 Inhaltsverzeichnis
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Mündliche Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Tafel, Folien, Beispielprogramme</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Wissenschaftliches Seminar</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Scientific Seminar</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WissSem</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 28 h</td>
</tr>
<tr>
<td></td>
<td>SWS Seminar</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten = 62 h</td>
</tr>
<tr>
<td></td>
<td>Aufarbeitung des Themas</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung einer Präsentation</td>
</tr>
<tr>
<td></td>
<td>schriftliche Ausarbeitung des Themas</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td></td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Erarbeitung eines anspruchsvollen Themas</td>
</tr>
<tr>
<td></td>
<td>Mündliche Präsentation eines anspruchsvollen Themas</td>
</tr>
<tr>
<td></td>
<td>Schriftliche Dokumentation eines anspruchsvollen Themas</td>
</tr>
<tr>
<td></td>
<td>Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Die fachlichen Lehrziele sind angebotsspezifisch.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Dieses Modul kann durch unterschiedliche Lehrveranstaltungen implementiert werden. Die fachlichen Inhalte sind angebotsspezifisch.</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen:</td>
<td>Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Studien-/ Prüfungsleistungen sind veranstaltungsspezifisch und werden zu Beginn der Veranstaltung bekanntgegeben.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Wissenschaftliches Seminar (dual)</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Scientific Seminar (dual)</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WissSem</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 5. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten der FIN</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Schlüssel- und Methodenkompetenzen - Wissenschaftliches Seminar</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten = 28 h</td>
</tr>
<tr>
<td></td>
<td>SWS Seminar</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten = 62 h</td>
</tr>
<tr>
<td></td>
<td>Aufarbeitung des Themas</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung einer Präsentation</td>
</tr>
<tr>
<td></td>
<td>schriftliche Ausarbeitung des Themas</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Selbstständige Erarbeitung eines anspruchsvollen Themas</td>
</tr>
<tr>
<td></td>
<td>Mündliche Präsentation eines anspruchsvollen Themas</td>
</tr>
<tr>
<td></td>
<td>Schriftliche Dokumentation eines anspruchsvollen Themas</td>
</tr>
<tr>
<td></td>
<td>Dieses Modul wird durch unterschiedliche Lehrveranstaltungen implementiert. Die fachlichen Lehrziele sind angebotsspezifisch</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Dieses Modul kann durch unterschiedliche Lehrveranstaltungen implementiert werden. Die fachlichen Inhalte sind angebotsspezifisch.</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>veranstaltungsspezifisch</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Wissenschaftliches Team-Projekt</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Wissenschaftliches Team-Projekt</td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WTP</td>
</tr>
<tr>
<td>Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dozenten der FIN</td>
</tr>
<tr>
<td>Sprache:</td>
<td>---</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: M.Sc. CV - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Models</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods I</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Methods II</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE (alt) - Bereich Applications</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Ingenieurinformatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Bereich Ingenieurwissenschaften</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. INGINF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. VC - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Bereich Wirtschaftswissenschaften</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. WIF - Schlüssel- und Methodenkompetenzen</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Projekt</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Betreute Projektarbeit, Teamarbeit, Selbststudium, Präsentationen</td>
</tr>
<tr>
<td>180h (Verteilung veranstaltungsspezifisch)</td>
<td></td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse:</td>
<td>Lernziele & erworbene Kompetenzen:</td>
</tr>
<tr>
<td>Fortgeschrittene methodische Kompetenzen auf dem Gebiet der Informatik und ihre Anwendungen</td>
<td></td>
</tr>
<tr>
<td>Fortgeschrittene persönliche und soziale Kompetenzen</td>
<td></td>
</tr>
<tr>
<td>Arbeiten im Team</td>
<td></td>
</tr>
<tr>
<td>Vorbereitung und Durchführung wissenschaftlicher Präsentationen</td>
<td></td>
</tr>
<tr>
<td>Selbstständiges und geleitetes wissenschaftliches Arbeiten</td>
<td></td>
</tr>
<tr>
<td>Implementierung und Bewertung wissenschaftlicher Ideen</td>
<td></td>
</tr>
<tr>
<td>Dieses Modul wird von unterschiedlichen Hochschullehrern implementiert. Die fachlichen Lehrziele sind daher angebotsspezifisch</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt:

Dieses Modul wird von unterschiedlichen Hochschullehrern implementiert. Die fachlichen Inhalte sind daher angebotsspezifisch.

Studien-/Prüfungsleistungen:

veranstaltungsspezifisch

Medienformen:

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Wissenschaftliches Teamprojekt KMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Teamproject KMD</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>TeamprojKMD</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lehrstuhl Angewandte Informatik / Wirtschaftsinformatik II (Arbeitsgruppe KMD)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Myra Spiliopoulou</td>
</tr>
<tr>
<td>Sprache:</td>
<td>---</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. DIGIENG - Methoden der Informatik
FIN: M.Sc. DKE - Applied Data Science
FIN: M.Sc. DKE (alt) - Bereich Methods I
FIN: M.Sc. DKE (alt) - Bereich Methods II
FIN: M.Sc. DKE (alt) - Bereich Applications
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Wirtschaftsinformatik
Als Implementierung des generischen Moduls "Wissenschaftliches Teamprojekt" entsprechend anrechenbar. |
| Lehrform / SWS: | Wissenschaftliches Teamprojekt |
| Arbeitsaufwand: | Präsenzzeiten (inkl. Beratungstermine) und selbstständiges Arbeiten (einzeln und im Team) gemäß "Kreditpunkte"
180h = 28h Präsenzzeit +152h selbständige Arbeit
Selbständige Bearbeitung von einem anspruchsvollen wissenschaftlichen Thema in Gruppenarbeit
Präsenzzeit (inkl. Beratungstermine) für die Betreuung und Besprechung des Themas, Kontrolle des Fortschritts bei der Bearbeitung
Koordination im Team
Vorbereitung einer Präsentation
Vorbereitung der Hausarbeit, zu der auch die Inhalte der Präsentation gehören |
| Kreditpunkte: | 6 |
| Voraussetzungen nach Prüfungsordnung: | |
| Empfohlene Voraussetzungen: | Data Mining |
| Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen: |
1. Allgemeine Ziele und Kompetenzen: s. Modulbeschreibung des fakultätsweiten Moduls "Wissenschaftliches Team-Projekt" sowie
 2. Fachspezifische Ziele und Kompetenzen:
 Erwerb von Kenntnissen zu ausgewählten Themen von "Knowledge Management & Discovery" (Beispiele von Teilgebieten unter "Inhalt")
 Einarbeitung in einem anspruchsvollen wissenschaftlichen Teilgebiet von "Knowledge Management & Discovery"
 Erarbeitung von einer Lösung zu einer reellen oder realitätsnahen (vereinfachten) Aufgabenstellung im Gebiet von "Knowledge Management & Discovery"

Inhalt:

Fortgeschrittene Aufgabenstellungen aus dem Forschungsgebiet "Knowledge Management & Discovery", darunter Themen aus den Teilgebieten:
- Stream Mining
- (Stream) Recommenders
- Medical Mining
- Opinion (Stream) Mining
- Active & Semi-supervised (Stream) Learning

Studien-/Prüfungsleistungen:

Prüfung: Hausarbeit

Medienformen:

Literatur:

Themenabhängig, wird am Anfang des Projekts für jedes Team bereitgestellt
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Wissenschaftliches Teamprojekt Managementinformationssysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Scientific Teamproject Management Information Systems</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WTPMIS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>M.Sc. ab 1. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Hans-Knud Arndt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
|Zuordnung zum Curriculum: | FIN: M.Sc. CV - Bereich Informatik
FIN: M.Sc. CV - Bereich Computervisualistik
FIN: M.Sc. DIGIENG - Human Factors
FIN: M.Sc. INF - Bereich Informatik
FIN: M.Sc. INGINF - Bereich Informatik
FIN: M.Sc. WIF - Bereich Informatik |
|Lehrform / SWS: | Übung; Seminar |
|Arbeitsaufwand: | Präsenzzeiten = 56 h
2 SWS Seminar
2 SWS Übung
Selbstständiges Arbeiten = 124 h
Aufarbeitung des Themas
Vorbereitung einer Präsentation
schriftliche Ausarbeitung des Themas |
|Kreditpunkte: | 6 |
|Voraussetzungen nach Prüfungsordnung: | |
|Empfohlene Voraussetzungen: | |
|Angestrebte Lernergebnisse: | Lernziele & erworbene Kompetenzen:
Fortgeschrittene methodische Kompetenzen auf dem Gebiet der Informatik und ihre Anwendungen
Fortgeschrittene persönliche und soziale Kompetenzen
Arbeiten im Team
Vorbereitung und Durchführung wissenschaftlicher Präsentationen
Selbstständiges und geleitetes wissenschaftliches Arbeiten
Implementierung und Bewertung wissenschaftlicher Ideen |
|Inhalt: | Ausgewählte Themen zu Managementinformationssysteme |
| Studien-/ Prüfungsleistungen: | Prüfungsvorleistung: -
Prüfung: Hausarbeit (Seminararbeit) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Webseite: http://bauhaus.cs.uni-magdeburg.de</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Wissensmanagement – Methoden und Werkzeuge</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>engl. Modulbezeichnung:</td>
<td>Knowledge Management – Methods and Tools</td>
</tr>
<tr>
<td>ggf. Modulniveau:</td>
<td></td>
</tr>
<tr>
<td>Kürzel:</td>
<td>WMS</td>
</tr>
<tr>
<td>ggf. Untertitel:</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>B.Sc. ab 3. Semester</td>
</tr>
<tr>
<td>Semesterlage:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Lehrstuhl Angewandte Informatik / Wirtschaftsinformatik II (Arbeitsgruppe KMD)</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Myra Spiliopoulou</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>FIN: B.Sc. CV - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INF - Studienprofil - Lernende Systeme / Biocomputing</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. INGINF - WPF Informatik</td>
</tr>
<tr>
<td></td>
<td>FIN: B.Sc. WIF - Gestalten</td>
</tr>
<tr>
<td></td>
<td>FIN: M.Sc. DKE - Applied Data Science</td>
</tr>
<tr>
<td></td>
<td>Für Freigabe und Zuordnung zu Curricula von interdisziplinären Studiengängen und von Studiengängen außerhalb der FIN, s. Studiumsdokumente des jeweiligen Studiengangs.</td>
</tr>
<tr>
<td>Lehrform / SWS:</td>
<td>Vorlesung; Übung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeiten: 2 SWS Vorlesung + 2 SWS Übung</td>
</tr>
<tr>
<td></td>
<td>Selbstständiges Arbeiten:</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbearbeitung der Vorlesung</td>
</tr>
<tr>
<td></td>
<td>Entwicklung von Lösungen für die Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>Vorbereitung für die Abschlussprüfung</td>
</tr>
<tr>
<td></td>
<td>150 h = 4 SWS=56h Präsenzzeit+94h selbständige Arbeit</td>
</tr>
<tr>
<td></td>
<td>Masterstudiengänge: 6 CP -- erreicht durch Zusatzaufgabe, die in der Übung zum Semesterbeginn angekündigt wird</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td></td>
</tr>
</tbody>
</table>
Wissensmanagement im Unternehmen: Begriffe und Ordnungsrahmen für Wissensmanagement-lösungen
Wissen und Strategie/Entscheidungsunterstützung
Wissensmanagementmethoden für explizites und tazides Wissen, darunter Dokumentenmanagement und Text Mining
Fallbeispiele

Studien-/Prüfungsleistungen:
Vorleistungen:
Erfolgreiche Bearbeitung der Übungsaufgaben
Präsentationen von Ergebnissen
Modalitäten werden zum Veranstaltungsbeginn angegeben.
Prüfung: schriftlich (Klausur)

Medienformen:
Literatur:

<table>
<thead>
<tr>
<th>Literatur zum Teil I der Lehrveranstaltung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Fallstudien zusätzlich aus:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur zum Teil II der Lehrveranstaltung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Tutorial von Jesse Read zu Multi-Label Klassifikation (verlinkt vom Foliensatz) 2013</td>
</tr>
</tbody>
</table>

Außerdem, zwei Einstiegsartikel zu Textklassifikation:
Weiterführende Literatur zum Teil II:
Wissensrohstoff Text: Eine Einführung in das Text Mining’, Chris Biemann, Gerhard Heyer, Uwe Quasthoff (2022), SPRINGER
Im Teil II gehen wir Themen ein, die im Buch in
✗ Abschnitt 3.2 ‘Die linguistische Pipeline’: Unterabs. 3.2.1-4
✗ Abschnitt 6.6 Klassifikation, insbesondere Naive Bayes & Evaluation
✗ Abschnitt 6.7 Erstellung von Trainingsdaten erscheinen.
Weitere zitierte Literatur, zusätzliche Fallstudien und wissenschaftliche Artikel werden am Anfang des jeweiligen Veranstaltungsblocks bekannt gegeben.