
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.:

Veit Köppen, David Broneske, Gunter Saake, Martin Schäler

FIN-ITI-DBSE

FIN-002-2015

Elf: A Main-Memory Structure for Efficient
Multi-Dimensional Range and Partial Match Queries

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-002-2015

Elf: A Main-Memory Structure for Efficient
Multi-Dimensional Range and Partial Match Queries

Veit Köppen, David Broneske, Gunter Saake, Martin Schäler

FIN-ITI-DBSE

Technical report (Internet)
Elektronische Zeitschriftenreihe
der Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg
ISSN 1869-5078

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120
39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_reports.html
Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss:

Bezug: Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Dekanat

Veit Köppen

veit.koeppen@ovgu.de

22.12.2015

Elf: A Main-Memory Structure for Efficient
Multi-Dimensional Range and Partial Match Queries

Veit Köppen
Otto-von-Guericke University

Magdeburg, Germany
veit.koeppen@ovgu.de

David Broneske
Otto-von-Guericke University

Magdeburg, Germany
david.broneske@ovgu.de

Gunter Saake
Otto-von-Guericke University

Magdeburg, Germany
gunter.saake@ovgu.de

Martin Schäler
Karlsruhe Institute of
Technology, Germany

martin.schaeler@kit.edu

ABSTRACT
Efficient evaluation of selection predicates (e.g., range predicates)
defined on multiple columns of the same table is a difficult, but
nevertheless important task. Especially for subsequent join process-
ing or aggregation, we need to reduce the amount of tuples to be
processed. As we have seen an enormous increase of data with the
last decade, this kind of selection predicate became more important.
Especially in OLAP scenarios or scientific data management tasks,
we often face multi-dimensional data sets that need to be filtered
based on several dimensions. So far, the state-of-the-art solution
strategy is to apply highly optimized sequential scans. However,
the intermediate results are often large, while the final query result
often only contains a small fraction of the data set. This is due to
the combined selectivity of all predicates. In this report, we propose
Elf - a new tree-based approach to efficiently support such queries.
In contrast, to other tree-based approaches, we do not suffer from
the curse of dimensionality. The main reason is that we do not apply
space or data partitioning methods, like bounding boxes, but incre-
mentally index sub-spaces. In addition, our Elf is cache sensitive,
contains an optimized storage layout, fixed search paths, and even
supports slight data compression rates. Our experimental results
indicate a clear superiority of our approach compared to a highly
optimized SIMD sequential scan as competitor. For TPC-H queries
with multi-column selection predicates, we achieve a speed-up be-
tween factor five and two orders of magnitude, mainly depending
on the selectivity of the predicates.

Keywords
data analytics, indexing, main-memory databases, storage structures

1. MOTIVATION
Efficient evaluation of range predicates on large database tables

is ever since an important task. Especially for subsequent join-
processing, reducing the input by applying the famous optimiza-
tion rule "pushing down" selections is one important application.
With the rise of main-memory systems for analytical and scientific

Copyright is held by the owners/authors.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from the authors.

processing, we encounter a fundamental change. For disk-based
systems, mostly organized in rows, the main performance bottle-
neck is loading data into the main-memory. Now, with sufficient
main-memory available at reasonable cost, we cannot only count
the accesses to main-memory, but also need to take other factors,
as CPU utilization and cache misses, into consideration [10, 23, 24,
29]. In concert with this technological change, we also encounter a
change in data processing. Due to the increasing amount of data, we
observe an increasing number of multi-dimensional data sets from
various domains, such as OLAP and scientific computing.

When working with multi-dimensional data sets, we usually have
to answer queries with selection predicates on several attributes of a
table. This is also observable when looking at certain well-known
benchmarks, such as TPC-H [34] or Star Schema Benchmark [27],
which include such queries.

As an example, we may want to sum up the total amount of goods
sold in last year in Europe for a products from European suppliers.
This query can be formulated SQL as presented in Listing 1 for
instance. We call such a selection a multi-column selection predi-
cate. For the example, we have to evaluate three different selection
predicates.

SELECT SUM(s o l d _ g o o d s)
FROM A_Table
WHERE s u p p l i e r _ r e g i o n = ’ Europe ’
AND c u s t o m e r _ r e g i o n = ’ Europe ’
AND year (s a l e s d a t e) = 2014 ;

Listing 1: Example of Multi-column Selection Predicate Query

By looking at the selectivity of all three predicates, they result
in large fractions of the overall data set. However, their combined
selectivity is often that low (e.g., around one percent of the data) that
tree-based indexing schemes seem promising. Recent approaches,
like BitWeaving [25] or Column Imprints [32], however, focus
only on mono-column selection predicates. Consequently, we need
to fully scan each column having a predicate and then compute
the final result. We hypothesize that we could highly speed up
query performance if we can exploit the combined selective power
of all predicates in concert. To the best of our knowledge, there
is currently no such approach that has been optimized for main-
memory environments.

When looking at classical indexing schemes, we find a vast
amount of approaches that allow for evaluating multi-dimensional
range queries, which is highly related to evaluation of multi-column

selection predicates. For instance, the R-tree family allows for easy
range query evaluation, due to their concept of minimum bound-
ing rectangles [17]. In a similar way, kd-trees naturally support
range-query evaluation by their concept of partitioning the space
using axis-parallel hyperplanes [5]. However, so far all tree-based
approaches suffer from the curse-of-dimensionality [6, 7]. This
means in particular, that for a certain number of dimensions (16
according to [6]), simple sequential scans have better performance
than these approaches.

There has been a large discussion whether tree-based indexes
can somehow be modified to weaken the effects of the curse (e.g.,
X-trees [7]). However, as undertaken countermeasures only increase
the number of dimension where we observe the performance turning
point between index and sequential scan, the overall problem is
still unsolved. We argue that this is the reason why recent research
mainly focuses on highly optimized sequential scans. Nevertheless,
when taking a closer look at all indexing approaches, we make an
interesting observation.

Independent of the specific concept they are designed on (e.g.,
bounding rectangles, separation of the space by hyperplanes) they
are in that way similar, that they enclose a certain sub space with a
certain geometric form. This, however, means for multi-dimensional
spaces that most of the space within these forms are empty, due
to the sparse population of these spaces. We argue that this is the
actual problem of all these approaches. Hence, we need to come up
with a totally different concept that does not index empty spaces,
but still allows for evaluation of selection predicates, for instance
by separating the data space in an axis parallel manner. With prefix-
redundancy elimination, we found such a concept.

In this report, we contribute a novel approach for efficient eval-
uation for multi-column selection predicate evaluation, which we
name Elf1. Moreover, we empirically show the superiority of our
novel approach in comparison to a state-of-the-art SIMD sequential
scan for two use cases. In particular:

1. We define design principals for our novel approach based
on limitations of currently used approaches that in fact are
the primary reason for the performance loss of tree-based
approaches in multi-dimensional spaces.

2. Based on our design principals, we conceptually design the
Elf and introduce respective build and search algorithms.

3. We define a memory layout for Elf, effectively exploiting the
targeted low selectivity scenario of multi-column predicate
evaluation.

4. We introduce non-trivial optimizations of the memory layout
to counter all negative effects of the curse of dimensionality
on our approach.

5. We conduct an experimental evaluation of our approach indi-
cating the superiority of our approach compared to a SIMD
sequential scan for exact-match queries and multi-columns
selection predicate evaluation queries based on the TPC-H
benchmark.

The remainder of this report is structured as follows. In Section 2,
we review related work to support our argumentation on limitations
of currently used approaches. Based on that information, we define
our new approach in Section 3. In this section, we also introduce all
1The underlying idea for Elf is derived from Dwarf, but the unique
combination of additional carefully chosen optimizations renders
it superior to state of the art approaches. Therefore, we see more
magic in it.

optimizations and required algorithms. The empirical evaluation is
presented in Section 4.

2. RELATED WORK
Multi-dimensional data is in the focus of many application sce-

narios in databases, ranging from statistical, multimedia, or forensic
data analysis to On-Line Analytical Processing (OLAP) or Big Data.
The complexity behind querying these data sets is discussed on
both levels, in application oriented approaches as well as on a more
abstract level [16]. To handle data access, former research focused
on multi-dimensional indexing (an overview on index structures can
be found in [9, 15]) while currently, accelerated main-memory scans
have become popular.

Multi-Dimensional Indexing
Weber et al. classify multi-dimensional index structures into space-
partitioning and data-partitioning methods [36]. Space-partitioning
methods (e.g., VA-File [36], kd-tree [5], p-stable LSH [13]) split
the indexed space along predefined lines without considering the
data distribution. Hence, we end up with several densely populated
and some sparsely populated regions. Still, space-partition methods
feature an easy definition of a partitioning of the space and, thus,
such a partitioning strategy is a design decision included in our Elf.

In contrast, data-partitioning methods (e.g., R-tree [17] and its
derivatives R+-tree [31], R∗-tree [4], X-tree [7]) index only space,
where data can be found. Although this leads to a more complex
definition of regions and also overhead in traversing the index struc-
ture, data-partitioning methods are able to quickly prune the search
space, because they do not index un-populated space. Although
effected by the curse of dimensionality, pruning the search space
is still an important feature to reach good query performance for
high-dimensional queries and should be considered in our Elf as
well. In conclusion, we aim at an index structure with a simple
partitioning scheme that is also able to exclude regions from the
search space.

Accelerated Main-Memory Scans
Due to the curse of dimensionality [6], index structure performance
is said to deteriorate for data sets with a dimensionality above 16,
which renders a scan faster than index structures. To improve the
performance of scan algorithms, especially in main-memory, the
exploitation of the hardware has become an important topic. This
includes the usage of SIMD (single instruction multiple data), e.g.,
in the work of Zhou and Ross [40], Willhalm et al. [38, 39] and
Polychroniou and Ross [28]. Furthermore, cache-consciousness
and compression is an important property for accelerated scans as
the results of the Column Imprints [32] and BitWeaving [25] show.
To reach compatible results, our Elf has to feature a cache-friendly
memory layout.

3. ELF STORAGE STRUCTURE
We present our new storage structure for efficient multi-dimen-

sional querying in this section. Firstly, we discuss the design and
aspects to overcome the curse of dimensionality. Secondly, we give
some insights in constructing and searching the Elf.

3.1 Core Design Idea
It is commonly known that, so far, all tree-based index structures

are affected by the curse of dimensionality. This means that their
performance in high-dimensional space is often worse than that of a
simple sequential scan. As an example, Berchtold et al. state that 16
dimensions are the crucial turning point [7]. The reasons therefore

are mainly the pure size of the multi-dimensional space and the
tendency of data points to be in one of the corners of the resulting
data space. However, if we take a closer look at the most well-
known tree-based indexing approaches, namely R-trees [17] and
kd-trees [5], we make an interesting observation. The problem is not
the curse-of-dimensionality itself but non-trivial design limitations
are in fact the real problem. For the R-tree family (and several
spherical improvements) the basic idea is using minimum bounding
geometric forms (rectangles, e.g., [3, 4, 18, 31], spheres, e.g., [35,
37], or mixtures, e.g., [19, 22]) to describe a box that totally encloses
a sub-tree or the points in a leaf node. This design features two
fundamental limitations. First, all nodes cover the same number of
entries. As a result, the deeper we descend in the tree, the worse is
the ratio between indexed space and number of points covered in the
respective leafs of the considered sub-tree. A related effect of this
issue is that, we often have large overlaps of sub-trees, which does
not occur in low dimensional spaces. Second, by concept, bounding
boxes also index space where there is no data. Finally, storing such
bounding rectangles requires a lot of storage space, as we need to
store two n-dimensional points and the pointers to the sub-trees. Due
to these limitations, we observe the problem of overlapping nodes
besides others. We observe similar issues when looking at kd-trees.
Based on these observations, we define two design principles that
our Elf should feature:

1. No indexing of empty parts of the data space, which is con-
ducted for instance by bounding boxes like MBRs.

2. The size of indexed space and the number of indexed points
per tree level should decrease in the same order of magnitude.

To the best of our knowledge, our approach would be the first
that does not suffer from the curse of dimensionality. In particular,
we could even benefit from this curse, as we take advantage of
the sparse population of high-dimensional data spaces. As we are
not aware of an easy concept that allows for incorporating these
principles in R-tree-like or kd-tree-like structures, we needed to look
for a different concept. This concept is described in the following.

3.2 Conceptual design
Now, we explain the basic design of Elf with the help of the

example data in Table 1. The data sets consist of a four-dimensional
key with an additional reference (Ref) that points to additional data
such as BLOB, CLOBS, or image data, as well as tuple identifiers.
In case there is no additional data, the Ref can be discarded. This
differentiation of data can also be seen as differentiation between
hot and cold data [2], where hot data attributes are directly stored
within the data structure and cold data attributes are not used within
the query process, but can be referenced for other purposes.

Table 1: Running example data
D1 D2 D3 D4 Ref
0 1 0 1 T1

0 2 0 0 T2

1 0 1 0 T3

Prefix redundancy elimination
A concept that allows us to build an approach in concert with the
design principles is prefix redundancy elimination. It is first pro-
posed as part of the dwarf data structure, which materializes a cube
operator [33]. In contrast to the dwarf, our approach is designed for
efficient multi-dimensional querying. This requires for additional

concepts by omitting other features of the dwarf like suffix redun-
dancy elimination. These optimizations go in hand with the critics
for the evaluation of dwarfs [14, 26]. Therefore, we do not focus
on a fact schema, but design our structure also for OLTP scenarios.
However, the multi-dimensionality is more often addressed in the
OLAP context. So, we use TPC-H benchmark data in our evaluation
in Section 4. A direct comparison of the performance of the data
dwarf is therefore not useful and we refer to the results for tailoring
index and data structures for specific use cases [12, 20, 21].

For a given n-dimensional data set Dn and some order of dimen-
sions, we observe a prefix redundancy (for at least two points) if
the following holds. There is a k defining an interval [1, k] over the
range of dimensions, with k ≤ n. For such a k, we find at least two
points P1 and P2 in the data set, with P1 ̸= P2 having the same
values for all dimensions in the interval: ∀d∈[1,k]P1[d] = P2[d].
Considering the running example in Table 1, we observe a prefix
redundancy of T1 and T2 for k = 1, because both points have the
same value in the first dimension T1 and, thus, T1[1] = T2[1] holds
for the whole interval [1, 1].

The main idea of prefix-redundancy elimination is to store such
redundant occurrences of values, named a path, only once and not
for every point separately. The resulting data structure containing
all paths, is a tree of height n, where each level refers to the corre-
sponding dimension. This tree naturally supports efficient execution
of multi-column selection predicate queries, as we point out in the
remainder. For explanatory reasons, we now illustrate the basic
conceptual design of that tree with the help of the running example
data from Table 1, before we introduce further optimizations.

1 2

0 1

0

Dimension D1

Dimension D2

(1)

(2) (3)

0 T3 0 T21 T1

0 1
Dimension D3

Dimension D4
(7)

(5)

(8) (9)

0(4) (6)

Figure 1: Prefix redundancy elimination within Elf

An example Elf
In Figure 1, we depict our structure Elf for the example data from
Table 1. In the first dimension, there are two distinct values, 0 and
1. Thus, the first dimension list, L(1), contains two entries
and one pointer for each element. The respective pointer points to
the beginning of the respective dimension lists of the second
dimension, L(2) and L(3). Note, as the first two points share the
same value in the first dimension, we observe a prefix redundancy
elimination. In the second dimension, we cannot eliminate any pre-
fix redundancy as all attribute combinations in this dimension are
unique. As a result, the third dimension contains three dimension
lists: L(4), L(5), and L(6). This is the same number as points.
Note, the further we go through the dimensions, the more the proba-
bility decreases that we can eliminate a prefix redundancy, as there
are less points that may share the same prefix. However, this depends
on the dimension level as well as on the cardinalities of the current
and prior dimensions. Therefore, we assume as a good heuristic for
the order of dimensions to take always take the smallest cardinality

Dim0

Dim2

Dim1

1 2 3 4
1 2 31

2

3

4

4

Dim0

Dim2

Dim1

1 2 3 4
1 2 31

2

3

4

4

Dim0

Dim2

Dim1

1 2 3 4
1 2 31

2

3

4

4

Figure 2: Partitioning of a 3-dimensional space Elf – every piece is indexed except the gray parts.

dimension at first. Note, in our improved design, the first dimension
is an exception and should not be selected as the dimension with the
smallest cardinality.

Considering the node structure of Elf, the structure of the entries
changes in the last dimension. In an intermediate dimension, an
entry consists of a value and a pointer. In the last dimension, the
pointer is interpreted as a reference pointer (Ref). In case no Refs
are required, the entry consists of one value only.

In summary, our storage structure is a bushy tree structure of a
fixed height resulting in stable search paths. Moreover, our storage
structure is not restricted to OLAP-cube scenarios, but generally
applicable for multi-dimensional data. Note that our primary design
goal for Elf is not compressing the data, but to allow for efficient
multi-dimensional querying. To further optimize such queries, we
also need to optimize the memory layout of the Elf.

Relationship to the design principles
Due to the concept of prefix redundancy elimination, we state that we
do not index parts of the data space where there is no data. Starting
from the root node of an Elf (referring to the first dimension) to an
arbitrary level, we consider a sub space of the overall data space. For
each path, that means a combination of values for each dimension,
that can be constructed descending this Elf, we find at least one point
in the data set that has these values. Prefix redundancy elimination
also ensures that the nodes get smaller the deeper we descend an
Elf. In particular, we consider only the remaining sub space and
store all distinct values of points that are contained in the current
path. Differently speaking that means the following: Per tree level,
we do not only reduce the volume of the data space, but decrease
the dimensionality of the remaining sub-space to consider by one
dimension.

Vice versa, if the data set does not contain a specific value in
the first dimension of an n-dimensional data set, we can exclude
an n − 1 dimensional space from our index. We visualize this in
Figure 2, where we show the indexed space of a 3-dimensional Elf
(everything except the gray boxes is indexed). In the first dimension,
there is no dimension value 1 and thus, we can exclude a whole
slice. Furthermore, we can exclude a line, because there is no
point with dim0=3 and there is no dimension value 1 in the second
dimension. Finally, there is no point P[4,4,3], so that we can exclude
a small point of the data space. Hence, the earlier sparsely populated
dimensions come in the Elf, the more space can be excluded leading
to highly performant Elfs.

In summary, our Elf features the following properties:

• Fixed depth: the tree levels are directly defined by the num-
ber of involved columns (dimensions) that are used for our
Elf.

• Ordered in-node elements: Within all nodes the values are
ordered. This allows for stopping evaluation of a node in
case the upper limit of the query window is smaller than the
current node element.

• Prefix redundancy elimination: This property allows for
efficient pruning of the search space and also introduces light
compression rates.

However, as discussed, the space is getting sparse very quick
so that deeper levels often contain only one element, leading to a
linked-list-like data structure. Furthermore, the first dimension list
is always a perfect hash map, which should be exploited for efficient
queries. Both aspects are addressed in the following section.

3.3 Improving the design
An in-depth analysis of our first design reveals two limitations.

Both of them are related to our concept of prefix-redundancy elimi-
nation and decrease the performance of our Elf. The first limitation
are long lists in the first dimension, which need to be scanned and
the second limitation are dimension lists in deeper levels of the
tree containing only one key, due to the sparse population of high-
dimensional spaces. In the following, we introduce optimizations
that remove these limitations.

The hash-map property of the first dimension
The first dimension list includes all distinct values of the first di-
mension. This results in the limitation that we have to scan a large
amount of values in order to find the desired paths. However, due to
our design, the values in the first dimension are (already) arranged
in a way that allow us to directly use them as a hash map. Thus, we
totally remove the overhead for scanning a potentially large number
of values. We obtain this hash-map property, because the values in
the first dimension are ordered and dense (i.e., all values between
the smallest and largest value exist) due to the fact of the dictionary
encoding. Using these properties of a perfect hash map, we can
introduce a second optimization reducing the size required to store
the first dimension by Factor 2. So far, we store for every value also
the pointer to the next level (dimension). In the first dimension, the
value’s offset from the start of the dimension list implicitly encodes
the value. Thus, we only need to store the pointers. In Figure 3, we
depict the first dimension list for six values with pointers P0 to P5

illustrating this optimization.

MonoLists to counter the sparsity in high dimensions
When descending a path in an Elf, we reduce the dimensionality of
the remaining sub-space by one for each level we descend. These
sub-spaces are usually sparsely populated, which is a well-known

0 [P0] 1 [P1] [P2] 3 [P3] 4 [P4]ELF[00]
without
hash map

0 91 2 3 4 5 6 7 8
(1)

2 5 [P5]

10 11

[P0] [P1] [P2] [P3] [P4]ELF[00]
with
hash map

0 1 2 3 4 5
(1)

[P5]

Figure 3: Hash map property of the first dimension list

property of high-dimensional spaces. As a result, we often en-
counter a level where there is only one path and this path belongs to
only one point. So, we cannot exploit any more prefix-redundancy
eliminations, but create dimension lists containing only value and
pointer. For better illustration of this limitation, let us consider
the 15-dimensional Lineitem table of the 10GB TPC-H bench-
mark. An analysis of this table reveals, we can only exploit prefix-
redundancy elimination until Dimension 7. For any subsequent path,
we only find dimension lists belonging only to one point. When
searching in this list, we expect to observe a significant performance
decrease due to unnecessary jumps to the next dimension lists etc.
Thus, removing this limitation is desirable.

Our solution is the introduction of MonoLists. The basic idea is
to change the memory layout in case we encounter that a certain
path becomes unique. That means it belongs only to one point2.
The purpose of this change is to allow for efficient evaluation of the
remaining attribute values, by placing them adjacently in memory.
Consequently, we do not need to jump to the sub-seeding dimension
lists and save the storage space for the pointer to the next dimension
list. Differently speaking that means that we switch from a columnar
layout [1] to a row-wise layout. At the end of each MonoList, we
find the reference uniquely identifying this point. Using this concept
removes the aforementioned drawback.

Resulting improved memory layout
As a result of both improvements we receive the conceptual design
of the Elf as depicted in Figure 4. This structure has a more efficient
memory design and can make use of further technology regarding in-
memory. The different levels for the dimension lists within the Elf
are depicted by the different gray-scales. Note, the first dimension
exploits the hash map property and consists of two elements for
pointing to the next level dimension lists (2 and 12). The end of
the list is marked by the negative number of the value. A negative
pointer depicts that the next list is a MonoList.

[02] -[12] 1 -[6] -2 -[9] 0 1ELF[00]

0 91 2 3 4 5 6 7 8
(1) (2) (4)

T1
(5)

0

0 10 T2ELF[10]
(3)

0 T3

Figure 4: Optimized memory layout

Cold-data avoidance
Another observation can be introduced by analyzing the workload.
We often observe several dimensions that are rarely used. These
2In case we allow for duplicates; this optimization is extended to all
points with the same attribute values.

dimensions only add little or even no selective power to our Elf. On
the contrary storing this dimension requires storage space, which
in final consequence leads to worse caching performance due to
missing local adjacency of the hot data. Our Elf offers the possibility
to build on a sub-set of the set of dimensions. The remaining
attributes of a point can be accessed by its reference that is stored
in the Elf. The cold data is stored in columnar table layout. In the
remainder of this report, we denote such a cold data avoidance by
Elfn to indicate how many dimensions are indexed. Moreover, we
evaluate the benefit of this optimization.

3.4 Implementation
For the implementation of Elf, we use the programming language

C++. Due to the good control for memory and a fine granular
control of time measuring within C++, we decided for this program-
ming language. Nevertheless, in the following section, we present
the construction and the search within the Elf in a more general
description.

3.4.1 Construction algorithm
Since we assume that the incoming data are not sorted according

to the dimension order, we build a data structure called InsertElf
at first. The InsertElf is an intermediate data structure, where
insertions, deletions, and updates can be executed. Although it al-
ready features prefix-redundancy elimination, it is not optimized for
query execution, because its DimListElements are not neces-
sarily stored in an efficient accessible sequence, but may be spread
across memory. Thus, the construction of the Elf is split into two
phases, where we build the InsertElf and then linearize it to
have adjacent DimListElements, include the HashMap and also
build MonoLists.

Building the InsertElf

The InsertElf is stored as an array, where new elements are
appended to the end of this array. For being able to traverse the ele-
ments of a dimension list and to go to the child dimension
list of a DimListElement, each element has a pointer to the
array position, where the next dimension list is stored, and
to the position, where the next element in the current dimension
list is stored. We present the construction algorithm of the
InsertElf in Algorithm 1.

1 insert(point, tid, INSERT_ELF){
2 currentDimList ← FIRST_LIST;
3 for (dim ← 0 to NUM_DIM)do
4 dimListElement = getElement (currentDimList, point [dim],

INSERT_ELF);
5 if (isValid (dimListElement))then
6 currentDimList ← getNextDimList (dimListElement,

INSERT_ELF);
7 else
8 dimListElement ← createRemainingDimLists (dim,

currentDimList, point, tid, INSERT_ELF);
9 return;

10 end if
11 end for

// handle duplicate entries
12 dimListElement ← newElement(currentDimList, point [dim − 1],

INSERT_ELF);
13 setTID(dimListElement, tid);
14 }

Algorithm 1: Build the InsertElf

To insert a point in the InsertElf, we traverse the dimension
lists of the InsertElf along the coordinates of the point to in-
sert until we find a list that has no element corresponding to our cur-
rent dimension value. In other words, we descend the InsertElf

till the prefix of the point diverges from already stored prefixes. The
traversal is implemented as a for-loop (cf. Line 3), that retrieves the
element with the dimension value specified by the point (Line 4) and
checks whether this element exists (Line 5). On existence, we follow
the pointer to the element’s child dimension lists. Otherwise,
we found the maximum prefix and have to create the dimension
lists for the last dimensions (Line 8) as well as setting the TID
in the last dimension. If we can traverse the InsertElf till the
last dimension, we have found a duplicate point and just have to add
the TID to the last dimension list (Line 12-13).

Linearization
After building the InsertElf, we can descend this insert-optimized
data structure and linearize its content into an integer array. The
corresponding pseudo code is shown in Algorithm 2. We lin-
earize the Elf using a preorder traversal of the InsertElf. This
means, we store a full dimension list and after that store the
dimension list of the first child. Apart from the hash map in
the first dimension and the MonoLists, a dimension list of
size m consists of m value-pointer pairs stored consecutively in the
array.

Result: writePointer pointing to the next dimList in ELF
1 int linearize(ELF, writePointer, dimList, dim, INSERT_ELF){
2 dimListElement ← getFirstElement(dimList, INSERT_ELF);
3 listSize ← getSize(dimList, INSERT_ELF);
4 nextListPositions ← new Array[listSize];

// Write dimension values and pointers; last value
treated differently

5 for (i ← 0 to listSize-1)do
6 ELF [writePointer] ← getValue(dimListElement);
7 writePointer ← writePointer +1;
8 nextListPositions [i] ← writePointer;

// remember where to write the offset of the
next dimList

9 writePointer ← writePointer +1;
// point to next location where to add a value;
not a pointer

10 dimListElement ← getNextElem(dimListElement,
INSERT_ELF);

11 end for
// Create end of list by setting MSB

12 ELF [writePointer] ← setMSB (getValue(dimListElement));
13 writePointer ← writePointer +1;
14 nextListPositions [listSize-1] ← writePointer;
15 writePointer ← writePointer +1;

// Call remaining lists to linearize themselves
16 dimListElement ← getFirstElement(dimList, INSERT_ELF);
17 for (i ← 0 to listSize)do
18 nextList ← getNextDimList(dimListElement,

INSERT_ELF);
19 if (!isMonoList(nextList, dim +1, INSERT_ELF))then
20 ELF [nextListPositions [i]] ← writePointer;
21 writePointer ← linearize (ELF, writePointer, nextList,

dim +1, INSERT_ELF);
22 else
23 ELF [nextListPositions [i]] ← setMSB(writePointer);
24 writePointer ← linearizeMonoList (ELF, writePointer,

nextList, dim +1, INSERT_ELF);
25 end if
26 dimListElement ← getNextElem(dimListElement,

INSERT_ELF);
27 end for
28 return writePointer;
29 }

Algorithm 2: Linearize the InsertElf to build the final Elf

The first step in the linearization is to write the content of the cur-
rent dimension list (Line 5-11). However, at the moment of
the linearization of the current list, we do not know, where, e.g., the
second child dimension list will be written, because all chil-
dren of the first child dimension list are written before the sec-

ond one. Hence, we cannot write this pointer, but store its position
in the array nextListPositions (Line 8). With this, we can
write the pointers after the linearization of the child dimension
lists. When writing the elements of a dimension list, we
always have to treat the last element specifically, because we use the
indirect length control by setting the most significant bit (MSB) of
the stored value (Line 12-15).

After writing the current dimension list by iterating over
the current dimension list, we have to reiterate over it to
follow the paths to the child dimension lists (Line 16-26).
If the child dimension list is a MonoList, we have to use
the function linearizeMonoList, which writes all dimension
values of a point consecutively including the point’s TID. Otherwise,
we can call the function linearize recursively. Furthermore, we
write the pointers to the child dimension lists in this loop, as
we know now where they will start (Line 20). Notably, we do the
same in case of a MonoList except that we set the MSB of the
pointer to 1 to indicate that at next, we find a MonoList (Line 23).

3.4.2 Search algorithm
In this section, we briefly present the search functionality of our

new structure. We restrict ourselves to search for multi-column
selection predicates. This can be easily used for exact matches as
well as partial match queries.

Result: L Resultlist
1 SearchElf(lower, upper){
2 L ← ∅;
3 if (lower[0] ≤ upper[0])then

// predicate on first column defined
// exploit hash-map

4 start ← lower[0]; stop ← upper[0];
5 else
6 start ← 0; stop ← max {C1};
7 end if
8 for (offset ← start to stop)do
9 pointer ← Elf[offset];

10 if (noMonoList (pointer))then
11 SearchDimList (lower, upper, pointer, dim ← 1, L);
12 else
13 L ← L+SearchML

(lower, upper, unsetMSB(offset), dim ← 1, L);
14 end if
15 end for
16 return L;
17 }

Algorithm 3: Search in the Elf

The first part for searching in an Elf deals with the evaluation
of the query for the first dimension. This has to be differentially
handled due to the hash map within the first dimension list. We
present this part in Algorithm 3. As parameters the lower and upper
bounds for all dimensions are required. Note, if no definition for
a single dimension boundary is given, this query is a partial match
query and all elements in this dimension have to be retrieved.

The result of the search algorithm is a list L with all references to
points that fulfill the search criteria. Note, in the case that there are
no references used, we include the points themselves.

In Line 3 the hash map property is exploited for the case that the
query hyper rectangle contains a predicate on the first dimension.
Otherwise, we propagate the search for each value in the first list
to the next level. The next level is either a MonoList referring
only to one point with its values adjacently located in memory or
a dimension list. Due to this differentiation, we also have to check
whether or not the next level dimension list is of this type. In this
case, all remaining elements are checked for matching to the query
constraints and in a positive outcome included into L. Due to the

simplicity of this method, we do not depict it as an algorithm.
The search in a dimension list that is no MonoList is depicted

in Algorithm 4. Besides the lower and upper query ranges, this
algorithm needs as input the start offset of the current dimension as
well as the current dimension level. Additionally, we also need the
result list L.

1 SearchDimList(lower, upper, startlist, dim, L){
2 if (lower[dim] ≤ upper[dim])then
3 position ← startList;
4 do
5 if (isIn (lower[dim], upper[dim], Elf[position]))then
6 pointer ← Elf[position + 1];

// start of next list in dim+1
7 if (noMonoList (pointer))then
8 SearchDimList

(lower, upper, pointer, dim + 1, L);
9 else

10 L ← L+SearchML (lower, upper,
unsetMSB(pointer), dim + 1, L);

11 end if
12 else
13 if (Elf[position] > upper[dim])then
14 return;// abort
15 end if
16 position ← position + 2;
17 while (notEndOfList (Elf[position]));
18 else

// call SearchDimList or SearchML with dim + 1
for all elements

19 end if
20 }

Algorithm 4: Scan one dimension list within an Elf

The start offset marks the first element value in the dimension list
(Line 3). If the search predicate is defined for this dimension, we
check every value in this dimension list and propagate the search
to the next level or a MonoList in case of matching. We stop
checking further values in this list either if the next higher value is
larger than the defined search attribute value (Line 13) or the list end
is reached (Line 17). This is possible as we store attribute values
in an ordered fashion. Our search algorithm is a depth-first search,
because we firstly go into the next child level for identification
of results (Line 5) before checking the next element value in this
level. The reason therefore is that we assume that the curse of
dimensionality results in fewer values matches, which require to
visit deeper levels. More generally the idea is that we want to
quickly reach a level where we have a low selectivity, so that we
do not need to jump to the next level. The claim is that we achieve
maximum performance by optimizing the algorithm to be able to
exclude all values of a dimension list from further consideration
as fast as possible. That’s why attribute values are located next to
each other in memory. This claim is supported by the tendency
of multi-dimensional spaces of being sparsely populated and the
application scenario for low selectivity. Nevertheless, our Elf is not
limited to such an algorithm. In case future research indicates that a
different algorithm may result in better performance, for instance
for special data distributions, we could also change the algorithm.
However, initial test with different algorithms and slightly modified
data layouts did not show a superiority of these adaptions.

4. EMPIRICAL EVALUATION
This section presents small micro-benchmarks for the properties

of our presented index structure. We differentiate between build
times and storage consumption for creating our Elf. The query per-
formance is evaluated in two different scenarios. In the first scenario,
we investigate exact-match queries with a multi-dimensional query

predicate. In the second scenario, we execute selected queries from
the TPC-H benchmark to investigate partial match query perfor-
mance.

We evaluate two different implementations of our proposed index
structure. On the one hand, we evaluate a 32-bit implementation of
our Elf, where all dictionary compressed values as well as pointers to
the next dimension are stored in a 32-bit Integer. On the other hand,
we implemented a 64-bit Elf where the pointers are represented by
a 64-bit Integer. For a fair comparison, we use 32-bit data values for
this implementation, too.

Additionally, we use two competitors for our evaluation. On
the one side, we use the kd-tree [5], due to the promising results
from [30]. On the other side, we also want to compare our approach
against a non-index structure, which is optimized for new technolo-
gies: a columnar SIMD sequential scan [11]. Such an optimized
scan is a good competitor, because it is said to be the fastest access
method for high-dimensional data [8].

As evaluation data and benchmark, we decide for the well-known
TPC-H benchmark and data [34]. This benchmark is quite close
to our motivation for developing Elf and it is available for a sound
evaluation including repeatability and confirmability. However, due
to several parameters (e.g. scaling factors) as well as queries, we
restrict our evaluation to the following evaluation design decisions:

• Scaling factors: s = 10, s = 20, s = 30, s = 50, and
s = 100 are used.

• Queries: Q1, Q6, Q10, Q14, Q17, and Q19 are selected,
because they provide a reasonable set of predicates on the
biggest TPC-H tables.

We do not use directly the TPC-H data, but the dictionary com-
pressed data, where we only use integer values. Note, for a fair
comparison we use these data as input for all investigated data and
index structures. This goes along with a mapping of the queries to
the dictionary compressed values, too. Therefore, we also omit the
dictionary look-ups.

4.1 Experiment 1: Storage consumption
One important influence factor for performance evaluations is

the storage consumption. For index and storage structures we dif-
ferentiate between data information and index information. The
consumption for a sequential scan just requires the data and there-
fore, it is a benchmark for all structures. A typical index structure
for using storage for data and index information is the kd-tree.

Comparing the storage consumption in our scenario, we select
the scaling factor s = 10 in Figure 5. Furthermore, we present
the results for the sequential data, the kd-tree and four versions of
the Elf. Two include all data information and two use only seven
dimensions, whereas the others are addressed via a reference. We
name the later ones Elf-reduced. In the reduced version only the
first seven attributes are included in the Elf and the others are stored
in a row-wise structure as the original data elements. As order of
dimensions we use the following attributes:

1. Shipdate
2. Discount
3. Quantity
4. Linestatus
5. Returnflag
6. Shipinstruct
7. Shipmode
8. Linenumber

9. Tax
10. Commitdate
11. Receiptdate
12. Suppkey
13. Partkey
14. Extendedprice
15. Orderkey

Two remarkable points can be seen in Figure 5. Firstly, the Elf
achieves a slight compression due to its exploitation of the prefix

SIM
DSeq

kd
-T

ree
Elf-

32
Elf-

64

Elf-
32

-re
du

ced

Elf-
64

-re
du

ced
0

1,000

2,000

3,000

4,000

St
or

ag
e

in
M

B

Size Data Size Index

Figure 5: Storage consumption for Lineitem table

redundancies. Note, this is additional to the dictionary compression.
Secondly, of course, the 64-bit version requires more storage. Nev-
ertheless, this increase does not lead to a higher consumption than
the columnar stored data.

For a cold-data example, we present a reduced version of the
Elf that has a smaller amount of dimensions and all remaining
dimensions are stored via a reference. In our evaluation we use
seven dimensions for the Elf. Although the references consume
additional storage and only seven dimensions are used within the
Elf, a slight compression compared to the columnar stored data is
also achieved.

We also evaluated other scaling factors, but besides the increase of
storage consumption, there is no real difference of ratios compared
to s = 10. Therefore, we omit the other scaling factors.

4.2 Experiment 2: Build Times
As second performance evaluation, we focus on build times for

our data structure. In this evaluation, we use our construction algo-
rithm as presented in Section 3.4. Again, we use the Lineitem
table with a scaling factor s = 10. Due to the fact that the original
dictionary encoded data is stored in a row-wise way, our SIMD
implementation also requires build times for the columnar design of
the data.

SIM
DSeq

kd
-T

ree
Elf-

32
Elf-

64

Elf-
32

-re
du

ced

Elf-
64

-re
du

ced
1

10

100

1,000

B
ui

ld
Ti

m
e

in
s

Figure 6: Build time for Lineitem table of 10GB TPC-H

Again, we use the same candidates for our comparison. We
present our results in Figure 6. The rearrangement from a row-wise
structure to a columnar store takes approximately 9 s and is nec-
essary for our SIMD sequential scan. The kd-tree implementation
requires 109 s and is quite slow. Our 32- and 64-bit implementa-
tions do not really differ and therefore, we can state that the pointer
implementation does not influence the construction times. Due to
the fact that we do not have to change the cold data for our reduced
implementation, the corresponding build times are slower than the
full dimensional Elf with 931.8 s for Elf-64. The difference is about
100 s. As a result, we can state that the reduced-64-bit Elf requires
821 s for the construction and is the fastest of our designs. However,
the construction time is the weakest point of our structure. There-
fore, we see the need for additional research in the construction
algorithm.

10
GB

20
GB

30
GB

50
GB

10
0G

B

1,000

10,000

B
ui

ld
Ti

m
e

in
s

Figure 7: Elf-64-reduced build times for Lineitem table

We also use different scaling factors ranging from s = 20 to
s = 100. However, each Elf variant shows linear increase in the
build times. Therefore, we only present here one candidate, Elf-64-
reduced, in Figure 7. Note, we use a logarithmic scale for the build
times.

4.3 Experiment 3: Exact Match Queries
In the third evaluation, we analyze the response behavior for a

fully specified query. For this experiment, we query the Lineitem
table and specify every dimensional attribute. This can be also seen
as a primary key constraint in the case, a typical OLAP fact table
is queried in a star schema approach. Note, we use all 15 attributes
and leave the reduced versions in this scenario out, because they are
not designed for this evaluation.

We measure 100 randomly selected exact match queries in our
evaluation. The SIMD sequential scan requires more than 1.320 s,
whereas the kd-tree does not even require 0.75 ms. Note, this is
more than three orders of magnitude. However, our implementation
with a 32-bit point requires about 0.11 ms which is approximately 7
times faster than the kd-tree. Additionally, we assume that the 64-bit
pointer implementation of our Elf is preferred in a 64-bit hardware
environment. Therefore, the execution time of less than 0.089 ms
can be explained.

For other scaling factors (20, 30, 50, and 100), we obtain similar
results. In Figure 9, we present the results for our Elf-64 implemen-
tation. Due to the very fast response times, we executed 1000 exact
match queries in this part of the experiment. A linear trend, as in
the scenario of build times is observable for scaling factors s = 20
and more. However, the difference in the response times for s = 10

SIM
DSeq

kd
-T

ree
Elf-

32
Elf-

64

0.1

1

10

100

1,000

W
or

kl
oa

d
Ti

m
e

in
m

s

Figure 8: Workload time for exact-match queries on
Lineitem table (s = 10)

and s = 20 do not differ significantly. We assume that the first
dimension (in our Elf implemented as hash map) plays a vital role
due to the fact that increasing scaling factors do not influence the
first dimension and therefore, we obtain a stable first dimension list.
Due to the filling in lower scaling factors, we have a very similar
computational effort with our implementation which leads to similar
response times.

10
GB

20
GB

30
GB

50
GB

10
0G

B
0

1

2

3

Ex
ac

tM
at

ch
Ti

m
e

in
m

s

Figure 9: Elf-64-reduced exact match response times for
Lineitem table at different scaling factors

With the increase of data, a less than linear relation for execution
times for exact match queries can be seen. We interpret this as a
good indicator for scalability of our Elf design and good scaling
implementation.

The results from Figure 8 as well as Figure 9 underline the su-
periority for exact match queries in a high-dimensional context of
our implementation. However, we assume that this type of query
is not really significant for practical applications, such as OLAP.
Therefore, we evaluate our approach in the following with the help
of the TPC-H benchmark [34].

4.4 Experiment 4: TPC-H evaluation
In our last experiment setting, we are interested in typical queries

from the domain of decision making. Therefore, we use the TPC-H
data and queries. Due to the complexity of the underlying schema
and possible queries, we select only an excerpt from this benchmark.
We differentiate two main query types from the TPC-H queries:

(I) Queries on one predicate column and (II) multi-dimensional
queries. Although we focus on high-dimensional queries, we also
want to evaluate query scenarios, where our structure is not directly
designed for.

In Table 2, we present our selected queries. Q1, Q10, and Q14
use only a single selection attribute. However, very different selec-
tivities (σ) are addressed in these queries. Furthermore, we use the
same design and order of dimensions as presented earlier. Queries
Q6, Q17, and Q19 query multiple predicates. Note, Q19 uses two
tables (Lineitem and Part) and we also use two structures for
both tables.

example σ predicate columns ColElf
in %

Q1 98.0 l_date 0
Q10 1.72 l_returnflag 4
Q14 1.3 l_date 0

Q6 1.72 l_date, l_discount, l_quantity {0,1,2}
Q17 0.099 p_brand, p_container {1,2}
LQ19 1.4 l_quantity, l_shipinstr, l_shipmode {2,5,6}
PQ19 0.083 p_brand, p_container, p_quantity {1,2,3}

Table 2: Query details for mono and multi-column selections

We executed 1000 randomly selected queries and present the
measured response times in Figure 10. Due to the fact that our
kd-tree implementation always requires at least a magnitude more
than the SIMD sequential scan, we leave this competitor out of the
result presentation. Otherwise, the graphical interpretation would
be more complicate.

Q1 Q6Q10 Q14 LQ19Q17 PQ19
100

101

102

103

104

105

Approach

R
es

po
ns

e
Ti

m
e

in
m

s

SIMDSeq Elf-32 Elf-32-reduced
Elf-64 Elf-64-reduced

Figure 10: Response Times for TPC-H queries (s = 10)

For the single predicate queries the selectivity plays an important
role. In the case of a very big result (compared to the complete
table) (Q1), our Elf has a quite bad response rate and the SIMD
sequential scan outperforms it. However, applying the cold data
scenario (again with seven dimensions) reduces this gap significantly.
For these queries, the 32- or 64-bit implementation of Elf does not
influence the response times. For a lower selectivity (Q10), our full
Elf requires only some additional time compared to the SIMD scan,
if the queried attribute is not one of the first ordered dimensions.
However, the order of dimensions also plays an important role, as
it can be directly seen in Query Q14, where the queried attribute is
the first dimension of our Elf. In this scenario, our Elf outperforms

Q1 Q6Q10 Q14 LQ19Q17 PQ19
100

101

102

103

104

105

W
or

kl
oa

d
Ti

m
e

in
m

s

Q1 Q6Q10 Q14 LQ19Q17 PQ19
100

101

102

103

104

105

W
or

kl
oa

d
Ti

m
e

in
m

s

SIMDSeq Elf-32 Elf-32-reduced Elf-64 Elf-64-reduced

Figure 11: Workload times for TPC-H queries (s = 20) Figure 12: Workload times for TPC-H queries (s = 30)

the SIMD scan by more than one order of magnitude. Note, the
selectivity is comparable to Q10.

For multi-column selection predicates, the performance of the
Elf is much better than the SIMD scan. The reduced versions of
our implementation always have the best response times, but we
have to state that the queried attributes are always in the Elf stored
and therefore, these data are marked as hot data. Nevertheless, the
performance of the Elf is especially outstanding for Q17 and the
Part table in Q19. We explain this with the low selectivity of
the query and the occurrence of the queried attributes in the first
dimensions.

We also executed the experiment series for different scaling fac-
tors. We present the corresponding results for s = 20 in Figure 11
and for s = 30 in Figure 12.

As it can be easily seen, the measured workload times are quite
close and do not show a significant difference. An increase for the
workload times of all measured values is inherent. Our Elf cannot
compete with the SIMD sequential scan in Q1, However, as in the
scenario s = 10, the reduced versions are comparable to the SIMD
scan for Q10. In Q14, the measured results for all implementation
versions outperform the SIMD scan, which proves the applicability
for one column selection predicates with a low selectivity.

The multi-dimensional query types (Q6, Q17, and Q19) are again
similar to the presented results for s = 10.

For scaling factors s = 50 and s = 100, we present the response
times in Figure 13 and in Figure 14 respectively. In these scenarios,
the addressed data within our Elf cannot be handled in the 32-bit
implementation anymore. Therefore, we present only the SIMD
sequential scan and both versions of the Elf-64. However, the result
interpretation is very similar to the other scaling factors. Further-
more, we can derive a linear relationship of scaling factors and
response times for our approach. This drives us to the conclusion
that our approach is scalable and can handle big amounts of data
very efficiently.

5. CONCLUSION AND FUTURE WORK
Predicate evaluation in large OLAP applications usually involves

scanning multiple columns. In this scenario, we need an index

structure that is able to exploit the relation between data of several
columns. In this report, we present Elf, an index structure that
exploits prefix redundancies between data of several columns. Addi-
tionally, Elf features a fixed search path, a cache-friendly memory
layout, and comes with an additional slight compression of the data.
In our evaluation, we have shown that different our Elf data structure
outperforms a SIMD sequential scan and the kd-tree for exact match
as well as partial match queries on the TPC-H database by several
orders of magnitude. Furthermore, Elf shows a sub linear scaling
with increasing data sizes showing its potential for huge data sets.

For future work, we have to focus on a better understanding of
the impact factors of the Elf. This includes to create a cost model for
the Elf w.r.t. the column order and executed queries. Furthermore,
an extension of Elf to also store aggregates or support grouping
operations seems possible given the structure of our index structure.
Also, we have to investigate to which extent the Elf is able to support
join processing.

Acknowledgments
This work was supported by many people who gave their comments,
ideas and suggestions for improving the paper and Elf. We would es-
pecially thank Wolfram Fenske, Reimar Schröter, Sebastian Breßfor
their valuable comments.

6. REFERENCES
[1] ABADI, D., BONCZ, P., AND HARIZOPOULOS, S. Column

oriented database systems. PVLDB 2, 2 (2009), 1664–1665.
[2] ALEXIOU, K., KOSSMANN, D., AND LARSON, P.-A.

Adaptive range filters for cold data: Avoiding trips to siberia.
PVLDB 6, 14 (Sept. 2013), 1714–1725.

[3] ANANDHAKUMAR, P., PRIYADARSHINI, J., MONISHA, C.,
SUGIRTHA, K., AND RAGHAVAN, S. Location based hybrid
indexing structure - R k-d Tree. In Proc. Int’l Conf. on
Integrated Intelligent Computing (ICIIC) (2010), IEEE,
pp. 140–145.

[4] BECKMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., AND
SEEGER, B. The R*-tree: An efficient and robust access

Q1 Q6Q10 Q14 LQ19Q17 PQ19
100

101

102

103

104

105

106

W
or

kl
oa

d
Ti

m
e

in
m

s

Q1 Q6Q10 Q14 LQ19Q17 PQ19
100

101

102

103

104

105

106

W
or

kl
oa

d
Ti

m
e

in
m

s

SIMDSeq Elf-64 Elf-64-reduced

Figure 13: Workload times for TPC-H queries (s = 50) Figure 14: Workload times for TPC-H queries (s = 100)

method for points and rectangles. In Proc. Int’l Conf. on
Management of Data (SIGMOD) (1990), ACM, pp. 322–331.

[5] BENTLEY, J. Multidimensional binary search trees used for
associative searching. Commun. ACM 18, 9 (1975), 509–517.

[6] BERCHTOLD, S., BÖHM, C., AND KRIEGEL, H.-P. The
Pyramid Technique: Towards breaking the curse of
dimensionality. In Proc. Int’l Conf. on Management of Data
(SIGMOD) (1998), ACM, pp. 142–153.

[7] BERCHTOLD, S., KEIM, D., AND KRIEGEL, H.-P. The
X-tree: An index structure for high-dimensional data. In Proc.
Int’l Conf. on Very Large Data Bases (VLDB) (1996), Morgan
Kaufmann, pp. 28–39.

[8] BEYER, K., GOLDSTEIN, J., RAMAKRISHNAN, R., AND
SHAFT, U. When is “nearest neighbor” meaningful? In Proc.
Int’l Conf. on Database Theory (ICDT) (1999), Springer,
pp. 217–235.

[9] BÖHM, C., BERCHTOLD, S., AND KEIM, D. A. Searching in
high-dimensional spaces: Index structures for improving the
performance of multimedia databases. ACM Comput. Surv. 33,
3 (2001), 322–373.

[10] BRONESKE, D., BRESS, S., HEIMEL, M., AND SAAKE, G.
Toward hardware-sensitive database operations. In Proc. Int’l
Conf. on Extending Database Technology (EDBT) (2014),
OpenProceedings.org, pp. 229–234.

[11] BRONESKE, D., BRESS, S., AND SAAKE, G. Database scan
variants on modern CPUs: A performance study. In Int’l
Workshop on In-Memory Data Management (2014), vol. 8921
of LNCS, Springer, pp. 97–111.

[12] BRONESKE, D., DOROK, S., KÖPPEN, V., AND MEISTER,
A. Software design approaches for mastering variability in
database systems. In German Nat’l Workshop on Foundations
of Databases (Oct 2014), vol. 1313 of CEUR Workshop
Proceedings, pp. 47–52.

[13] DATAR, M., IMMORLICA, N., INDYK, P., AND MIRROKNI,
V. S. Locality-sensitive hashing scheme based on P-stable
distributions. In Proc. Annual Symp. on Computational
Geometry (SoCG) (2004), ACM, pp. 253–262.

[14] DITTRICH, J., BLUNSCHI, L., AND SALLES, M. Dwarfs in
the rearview mirror: How big are they really? PVLDB 1, 2
(2008), 1586–1597.

[15] GAEDE, V., AND GÜNTHER, O. Multidimensional access
methods. ACM Comput. Surv. 30 (1998), 170–231.

[16] GREBHAHN, A., BRONESKE, D., SCHÄLER, M.,
SCHRÖTER, R., KÖPPEN, V., AND SAAKE, G. Challenges in
finding an appropriate multi-dimensional index structure with
respect to specific use cases. In German Nat’l Workshop on
Foundations of Databases (2012), pp. 77–82.

[17] GUTTMAN, A. R-trees: A dynamic index structure for spatial
searching. SIGMOD Rec. 14, 2 (1984), 47–57.

[18] JÜRGENS, M., AND LENZ, H.-J. The Ra*-tree: an improved
R*-tree with materialized data for supporting range queries on
OLAP-data. In Int’l Workshop on Database and Expert
Systems Applications (1998), pp. 186–191.

[19] KATAYAMA, N., AND SATOH, S. The SR-tree: An index
structure for high-dimensional nearest neighbor queries. In
Proc. Int’l Conf. on Management of Data (SIGMOD) (1997),
ACM, pp. 369–380.

[20] KÖPPEN, V., HILDEBRANDT, M., AND SCHÄLER, M. On
performance optimization potentials regarding data
classification in forensics. In Proc. German Nat’l Conf. on
Business, Technology, and Web (BTW) - Workshops (2015),
vol. 242 of LNI, Köllen Verlag, pp. 21–36.

[21] KÖPPEN, V., SCHÄLER, M., AND SCHRÖTER, R. Toward
variability management to tailor high dimensional index
implementations. In Proc. Int’l Conf. on Research Challenges
in Information Science (RCIS) (2014), IEEE, pp. 452–457.

[22] KURNIAWATI, R., JIN, J., AND SHEPHERD, J. The SS+-tree:
An improved index structure for similarity searches in a
high-dimensional feature space. In Proc. of SPIE Conf. on
Storage and Retrieval for Image and Video Databases (1997),
pp. 110–120.

[23] LEHMAN, T., AND CAREY, M. A study of index structures
for main memory database management systems. In Proc.
Int’l Conf. on Very Large Data Bases (VLDB) (1986),
pp. 294–303.

[24] LEIS, V., KEMPER, A., AND NEUMANN, T. The adaptive
radix tree: Artful indexing for main-memory databases. In
Proc. Int’l Conf. on Data Engineering (ICDE) (2013), IEEE,
pp. 38–49.

[25] LI, Y., AND PATEL, J. Bitweaving: Fast scans for main
memory data processing. In Proc. Int’l Conf. on Management
of Data (SIGMOD) (2013), ACM, pp. 289–300.

[26] MICHALARIAS, I., OMELCHENKO, A., AND LENZ, H.-J.
FCLOS: A client-server architecture for mobile OLAP. Data
Knowl. Eng. 68, 2 (2009), 192 – 220.

[27] O’NEIL, P., O’NEIL, E., CHEN, X., AND REVILAK, S. The
star schema benchmark and augmented fact table indexing. In
Performance Evaluation and Benchmarking (2009), Springer,
pp. 237–252.

[28] POLYCHRONIOU, O., AND ROSS, K. Vectorized bloom filters
for advanced SIMD processors. In SIGMOD Workshop
DaMoN (2014), ACM.

[29] RAO, J., AND ROSS, K. Making B+-Trees cache conscious
in main memory. In Proc. Int’l Conf. on Management of Data
(SIGMOD) (2000), ACM, pp. 475–486.

[30] SCHÄLER, M., GREBHAHN, A., SCHRÖTER, R., SCHULZE,
S., KÖPPEN, V., AND SAAKE, G. QuEval: Beyond
high-dimensional indexing à la carte. PVLDB 6, 14 (2013),
1654–1665.

[31] SELLIS, T., ROUSSOPOULOS, N., AND FALOUTSOS, C. The
R+-Tree: A dynamic index for multi-dimensional objects. In
Proc. Int’l Conf. on Very Large Data Bases (VLDB) (1987),
Morgan Kaufmann, pp. 507–518.

[32] SIDIROURGOS, L., AND KERSTEN, M. Column imprints: A
secondary index structure. In Proc. Int’l Conf. on

Management of Data (SIGMOD) (2013), ACM, pp. 893–904.
[33] SISMANIS, Y., DELIGIANNAKIS, A., ROUSSOPOULOS, N.,

AND KOTIDIS, Y. Dwarf: Shrinking the PetaCube. In Proc.
Int’l Conf. on Management of Data (SIGMOD) (2002), ACM,
pp. 464–475.

[34] TRANSACTION PROCESSING PERFORMANCE COUNCIL.
TPC benchmark H (decision support). Tech. Rep. 2.17.1,
2014.

[35] VAN OOSTEROM, P. Reactive Data Structures for Geographic
Information Systems. PhD thesis, Rijksuniversiteit te Leiden,
1990.

[36] WEBER, R., SCHEK, H.-J., AND BLOTT, S. A quantitative
analysis and performance study for similarity-search methods
in high-dimensional spaces. In Proc. Int’l Conf. on Very Large
Data Bases (VLDB) (1998), Morgan Kaufmann Publishers
Inc., pp. 194–205.

[37] WHITE, D., AND JAIN, R. Similarity indexing with the
SS-tree. In Proc. Int’l Conf. on Data Engineering (ICDE)
(1996), IEEE, pp. 516–523.

[38] WILLHALM, T., BOSHMAF, Y., PLATTNER, H., POPOVICI,
N., ZEIER, A., AND SCHAFFNER, J. SIMD-Scan: Ultra fast
in-memory table scan using on-chip vector processing units.
PVLDB 2, 1 (2009), 385–394.

[39] WILLHALM, T., OUKID, I., MÜLLER, I., AND FAERBER, F.
Vectorizing database column scans with complex predicates.
In VLDB Workshop ADMS (2013), pp. 1–12.

[40] ZHOU, J., AND ROSS, K. Implementing database operations
using SIMD instructions. In Proc. Int’l Conf. on Management

of Data (SIGMOD) (2002), ACM, pp. 145–156.

