
Fakultät für Informatik 

Otto-von-Guericke-Universität Magdeburg 

Nr.:

Reimar Schröter

Arbeitsgruppe Datenbanken und Software Engineering

FIN-04-2014

Using Multi-Level Interfaces to Improve Analyses of Multi 

Product Lines



Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg 

Nr.: FIN-04-2014

Using Multi-Level Interfaces to Improve Analyses of Multi 

Product Lines

Reimar Schröter

Arbeitsgruppe Datenbanken und Software Engineering

Technical report (Internet) 

Elektronische Zeitschriftenreihe 

der Fakultät für Informatik 

der Otto-von-Guericke-Universität Magdeburg 

ISSN 1869-5078



Impressum (§ 5 TMG) 

Herausgeber: 
Otto-von-Guericke-Universität Magdeburg 
Fakultät für Informatik 
Der Dekan 

Verantwortlich für diese Ausgabe: 
Otto-von-Guericke-Universität Magdeburg 
Fakultät für Informatik 

Postfach 4120 
39016 Magdeburg 
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_reports.html 

Technical report (Internet) 
ISSN 1869-5078 

Redaktionsschluss:

Bezug:  Otto-von-Guericke-Universität Magdeburg 
  Fakultät für Informatik 
  Dekanat 

Reimar Schröter

reimar.schroeter@iti.cs.uni-magdeburg.de

15.10.2014



Using Multi-Level Interfaces to Improve Analyses of Multi
Product Lines

Reimar Schröter
University of Magdeburg, Germany

rschroet@ovgu.de

ABSTRACT

Software product lines (SPLs) enable an efficient develop-
ment of similar programs based on a common code base.
Although the number of SPLs in practice increases, the de-
velopment and maintenance of an SPL is still challenging.
In detail, a developer has to consider a huge amount of
variability in each step of the development cycle that can
become unmanageable. Therefore, multi software product
lines (MPLs) were introduced that divide this variability in
smaller more manageable parts. However, as result, the de-
pendency between these SPLs becomes challenging as well as
the analysis that should ensure the correctness of the whole
systems. We propose multi-level interfaces that consist of a
set of interfaces that encapsulate the modeling level, the im-
plementation level as well as the behavioral level between co-
operating software product lines. Using these interfaces, we
want to investigate whether it is possible to simplify analy-
ses according to these different levels so that we do not need
the knowledge about the whole MPL. Preliminary results
show that multi-level interfaces facilitate the domain com-
prehension for the developer, and reduce the complexity of
product-line analyses. We present an overview of hypotheses
and research methods as well as a concrete working plan to
investigate multi-level interfaces in the software product-line
lifecycle.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and interfaces

General Terms

Design, Reliability

Keywords

Software product lines, multi product lines, modularity, in-
terfaces

1. INTRODUCTION AND MOTIVATION
The reuse of software artifacts is an important concept to

reduce the effort through product development. Since the
beginning of the software-engineering age, many concepts
and mechanism were proposed to reuse software artifacts.
One of the most promising concepts for the reuse of soft-
ware artifacts are software product lines (SPLs) that allow
us to generate tailored products based on a common code
base [10, 3]. The commonalities and differences between

intended use
DBMS SPL

Plugins

Java

Index SPL

Preprocessor

JavaInterfaceuse support

Variability Model
Interface

Syntactical
Interface

Behavioral
Interface

Figure 1: Reuse of an index-structure SPL in a vari-
able database management system (adapted version
of [38]).

these products are described by features that can be selected
to generate a product according to the special requirements
of a stakeholder [18].
Several techniques and tools exist that allow a developer

to design, develop, and analyze SPLs. Nevertheless, indus-
trial SPLs tend to be very large and, thus, the developer
has to handle thousands of features (e.g., more than 11 000
features in the linux kernel [40]). This huge amount of vari-
ability is still challenging for each development step of an
SPL. One way to handle this variability is based on a di-
vide and conquer strategy in which the problem is described
in a set of dependent SPLs. The result is a multi software
product line (MPL), which is an arbitrary composition of
SPLs [33].
Let us consider a small example to clarify the main ideas

of MPLs. In Figure 1, we depict the dependency of an SPL
that represents a database management system (DBMS) to
an SPL for index structures (Index). We call this resulting
system of dependent SPLs an MPL. In detail, the DBMS
is a variable system based on plugins that intends to reuse
parts of a variable Index to optimize the performance of the
data access. By contrast to the DBMS, the SPL Index is
implemented based on preprocessors. If we want to combine
both SPLs, we have to ensure that each resulting product of
the DBMS works correct and use a tailored Index according
to the specific DMBS requirements. Thus, the complete sys-
tem is high variable (cf. if we consider a huge set of possible
variable Indexes that we can use in the SPL DBMS) and it
is difficult to describe the dependencies between these SPLs.
In previous research, the problem of the overwhelmed vari-

ability was mainly addressed according to one development
step of SPLs (i.e., variability modeling, implementation).
In the following, we classify these approaches as local ap-
proaches. In general, in these development steps exist a
direct dependency (see Figure 1, dashed arrow) between the
involved SPLs (i.e., on the modeling, implementation and
on the level of runtime behavior). Therefore, if we want to



analyze the MPL (e.g., consistency of the variability model),
we have to consider all dependent SPLs. This results in the
same complexity as for one huge SPL that realize the whole
variability. Thus, the question arise how can we efficiently
analyze the correctness of MPLs? Is it possible to find a
general concept that we can use in each development step?

By contrast to the existing approaches to handle vari-
ability, we focus on an approach that can be used in each
development step of MPLs and supports modular analy-
ses. Therefore, we suggest using the well-known concept
of interfaces that was applied with success in other areas
of software engineering, such as module systems and object-
oriented programming (OOP). In detail, we introduce multi-
level interfaces for MPLs that detach the direct dependency
between SPLs. In detail, the multi-level interfaces consist
of a variability-model interface, a syntactical interface, and
a behavioral interface. In Figure 1, we use these interfaces
between the SPL DBMS and the SPL Index. Here, the SPL
Index supports an interface for each development step that
can be used without further details of the underlying struc-
ture behind it (e.g., implementation or modeling details).
Furthermore, these interfaces depend on each other so that,
for instance, only syntactical artifacts are represented that
rely on features represented in the variability-model inter-
face. In this thesis, we investigate the usage of our interface
concept to reduce the complexity of analysis processes on
each development step. For instance, we are interested in
modular automated analyses of variability models, an easy
manual analysis of code artifacts by the developer for reuse,
and reduced complexity of analysis techniques for detection
of runtime violations of MPLs.

In the following, we present an overview of state-of-the-
art techniques for the development and analysis of SPLs
and MPLs including their advantages and drawbacks. After-
wards, we present the research issues and hypothesis for the
thesis with respect to existing approaches. We present our
general approach of interfaces and give an insight into our
proposed interfaces. Based on this description, we present
our research methodology and give an overview of completed
as well as open tasks of our working plan.

2. STATE-OF-THE-ART
In the following, we present existing work that tackles

the problem of the overwhelmed variability only partially.
Therefore, we divide the section according to the SPL’s de-
velopment steps in which we plan to introduce our concept
of multi-level interfaces. Afterwards, we give an overview
about existing analyses in MPLs.

Variability Modeling

Feature models are the most commonly used concept to de-
scribe the dependencies between features in an SPL [5]. Fea-
ture models were introduced by Kang et al. [18] and were
extended by several authors. Czarnecki et al. presents an
overview of these extensions that, for instance, introduce
cardinalities for feature groups and attributes specifying fur-
ther details of features [11].

To reduce the complexity of large feature models and to
improve the manageability, several authors propose feature-
model views [26, 17, 37]. In general, these views present
a tailored excerpt of the relevant features according to the
requirements of the stakeholder. Reiser and Weber intro-
duce multi-level feature trees to improve the manageability

of highly complex product families by feature and feature-
model references [31]. Using permission attributes, the user
can define allowed changes of a feature model compared to
a referred feature model.
In general, these techniques allow us to get an improved

overview of the basic elements of variability models, but
these concepts do not reduce the complexity of analyses. In
particular, it is not possible to locally analyze the correctness
of each model part.

Product-Line Implementation

The concepts to implement software product lines can be di-
vided in two parts, composition-based approaches and anno-
tation-based approaches [3]. Whereas annotation-based ap-
proaches (e.g., C-preprocessor) use annotations to describe
the implementation variability of an SPL, composition-based
approaches locally separate the different programming arti-
facts according to a feature.
Annotation-based approaches are well-known concepts in

industrial SPLs [3]. However, with increasing variability it
is challenging to maintain the code artifacts and to compre-
hend the code. Furthermore, the annotations can be very
fine-grained, so that in the worst case only one additional
character is added by an annotation. Therefore, the fine-
graininess is also curse and results in the “ifdef hell” [15, 25].
Approaches such as CIDE, which uses colors as markups
for different features, improve the maintainability of #ifdef
code [19]. Based on these techniques, Kästner et al. present
several views that can be used as support for the SPL im-
plementation [21].
Besides the annotation-based approaches, several com-

position-based approaches were proposed, such as feature-
oriented programming (FOP) [29, 6], aspect-oriented pro-
gramming [23], or delta-oriented programming [35]. These
techniques allow a developer to define all code artifacts ac-
cording to one feature locally separated (e.g., in feature mod-
ules).
The mentioned techniques to implement SPLs ease the

implementation of features. However, the implementation
is nonetheless challenging because it is not clear which code
artifacts of other features can be reused in the currently
developed or maintained code artifact. Approaches that in-
troduce views to the code (e.g., realization view for prepro-
cessors [21]) or restrict the code access (e.g., special access
modifiers for FOP [4]) decrease the set of usable implemen-
tation artifacts. Nevertheless, these approaches still present
elements that cannot be reused in the current implemented
feature.

Multi Software Product Line

MPLs are a general concept to tackle the variability prob-
lem. According to Holl et al., an MPL is “a set of several
self-contained but still interdependent product lines that to-
gether represent a large-scale or ultra-large-scale system”[16].
However, the proposed concepts according to MPLs address
in general the modeling step and do not present concepts
to develop MPLs that can be used on each development
step [16].
Using the concept of MPLs for the modeling step, it is

possible to decompose feature models in smaller parts and
to combine the resulting models using composition-based
approaches [8, 1, 34]. Therefore, several variability-model
languages were introduced, such as VELVET [34], TVL [9],



and FAMILIAR [2]. Besides these languages, Eichelberger
and Schmid present an overview about existing languages
and describe their capabilities [14].

Similar to the concepts of MPLs, module systems divide
the large-scale problem into smaller pieces and allow us to
combine the components in a flexible way. The Koala com-
ponent model defines provide and require interfaces for the
description of valid combinations of components [45]. Fur-
thermore, we can define Koala components in a hierarchical
fashion so that it is possible to build more complex compo-
nents and hide internal complexity. In addition, Reiser et al.
use feature models to describe the inner variability of such
hierarchical components and propose a set of pattern for the
variability specification [30]. By contrast to these concepts,
Kästner et al. present a module system with a variable in-
terface on code as well as modeling level [20]. This concept is
more flexible compared to Koala components and allows us
to present internal variability of the module to the interface.
Thus, a module is similar to an SPL and the composition
of multiple modules is similar to a composition of multiple
SPLs that describe an MPL. However, the approach does
not take the behavioral level into account.

Further techniques investigate the flexible evolution and
configuration of MPLs. In detail, Dhungana et al. present
combinable model fragments with public and private model
elements [12]. It is possible to merge these fragments semi-
automatic and save a merge history to automate the merge
process in future. Furthermore, several authors investigate
the configuration of MPLs. For instance, Rosenmüller and
Siegmund propose a stepwise configuration from the high-
level SPLs to the low-level SPLs to reduce unnecessary num-
ber of decisions [33]. By contrast, Dhungana et al. introduce
the tool Invar which is a web service system that allows us to
combine different variability modeling approaches and their
configurations [13]. As result, vendors and suppliers can use
their own modeling technique that is connected to Invar to
configure the final MPL’s product.

Product-Line Analyses

Analysis techniques vary among the different development
steps of SPLs. Thus, there are a set of specialized anal-
ysis techniques for the modeling, implementation, and the
behavioral level to ensure the correct functionality of each
SPL’s product. In the following, we give a short overview
about existing approaches and their basic ideas that we plan
to improve by our modularization concept according to each
development step.

Benavides et al. present an overview of existing auto-
mated analyses for feature models [7], such as the analyses
dead features. The knowledge about the existence of these
features is very important because a programmer can neglect
these features for the implementation. By contrast, false-
optional features are included in each product, in which the
parent is included and, thus, the programmer has to pay
attention on this feature during the implementation step.
Approaches, such as views, help to ease the modeling effort,
but fail to modularize the analysis step of the whole SPL’s
feature model. Furthermore, it is not clear whether it is
possible to modularize feature-model analyses.

Besides analysis techniques according to variability mod-
els, several approaches were published that aim to ensure the
correctness of a specific product-line implementation tech-
nique [41]. For instance, TypeChef is a variability-aware

type checker for preprocessors [22] and Fuji is a compiler and
type checker for the composition-based approach FOP [4].
These approaches help us to detect errors in SPL’s prod-
ucts in a more efficient way, but it is not possible to prevent
errors during the implementation. In detail, a developer is
interested in reusable code artifacts during the implementa-
tion (e.g., a method introduced in another feature), whereas
current techniques check the syntactical correctness only af-
ter the implementation. Therefore, we need further code-
analysis techniques to infer that we can reuse a specific code
artifact.
Furthermore, Ribeiro et al. propose emergent interfaces to

ease the maintenance of annotation-based SPLs [32]. These
interfaces were created by means of a dataflow analysis and
present requires and provides information related to a cur-
rently maintained code artifact. Therefore, the interfaces
were created on demand to the current selected code arti-
fact. This approach helps to prevent errors during the code
maintenance but does not present safely accessible code ar-
tifacts. Therefore, the developer has to search for reusable
artifacts for himself.
Design by contract is a well-known technique in object ori-

ented programming that facilitates checks to ensure correct
behavior of a program using pre-conditions (i.e., expected
method input) and post-conditions (i.e., expected method
output) [28]. Several authors proposed adapted approaches
of design by contract for SPLs. For instance, Thüm et al.
propose concepts to apply design by contract to FOP [44].
This allows developers of SPLs to verify the correct behav-
ior of each SPL’s product using, for instance, the theorem
prover KeY [43]. But, it is an open question how these ap-
proaches scale to large systems and whether it is possible to
modularize these analyses in MPLs. For further details, we
refer to a survey on general analysis strategies for SPLs and
on an overview of related tool support [41, 27].

3. RESEARCH ISSUES AND HYPOTHESES
According to the proposed work, especially for the devel-

opment of multi software product lines (MPLs), we identified
a lack of modularized analysis strategies for MPLs. Thus,
we consider the research on modular analysis strategies that
ensure the correct functionality of MPLs as main research is-
sue of the thesis. Thus, the management of the variability in
large-scale and ultra large-scale systems consisting of thou-
sands of features is challenging. Therefore, we need analysis
strategies to ensure the correctness of MPLs and support
their development.
In general, we want to tackle the problem of the variabil-

ity management with a general approach that is applicable
on each development step of MPLs and allows a simplifica-
tion of the analysis processes. Therefore, we are interested
in an approach supporting a modular analysis so that we
can efficiently check the correctness of the SPL on each de-
velopment step.
We propose multi-level interfaces according to the differ-

ent development steps to tackle the overall problem and to
reach our objectives. Interfaces are a well-known technique
in module systems and object-oriented programming for the
modularization of artifacts. By default, interfaces facilitate
information hiding. Therefore, we assume that it is possible
to reduce the complexity of the analysis processes, because
we have to consider only the dependencies to the specific
interface.



Domain
Implementation

Java, FOP

Variability
Model

Velvet Model

QuEval

Domain
Implementation

Java, Preprocessor

Variability
Model

TVL Model

Index SPLMulti-Level 
Interfaces

Variability 
Model

Behavioral

Syntactical

Figure 2: Interfaces for the reuse of SPLs in MPLs
(adapted version of [38]).

The proposed multi-level interfaces concept includes de-
pendent interfaces for variability models, the programming
interface, and the runtime behavior of SPLs. In general,
we expect a significant improvement of existing analyses on
each development step that we can improve the performance
of the specific analyses. For each development step, we for-
mulate a hypothesis that we want to investigate during the
thesis.

H1. The variability-model interface enables a performance
improvement of automated analysis on variability models in
evolving MPLs.

H2. The syntactical product-line interface helps to de-
tect reusable code artifacts and reduces the development time
compared to state-of-the-art techniques.

H3. The behavioral product-line interface based on design
by contract enables a time-efficient modular analysis to de-
tect violations in MPLs using verification techniques.

Different strategies are necessary to investigate each hy-
pothesis. In Section 5, we describe the strategies according
to our research methodology.

4. OVERVIEW OF THE MULTI-LEVEL IN-

TERFACE CONCEPT
By contrast to state-of-the-art approaches that mainly fo-

cus on a local approach for one specific development step
to manage variability, we propose a general approach using
the concept of interfaces to ease the analysis of MPLs. In
detail, we propose multi-level interfaces and expected ben-
efits (e.g., modular analysis) that we want to reach in each
development step of MPLs [38]. For the thesis, we plan to
refine our initial ideas so that we reach our overall goal of
a modular analysis on each development step of an MPL.
In the following, we give an insight of our main concept of
multi-level interfaces and present one of our case studies for
motivation purposes.

Case Study

We intend to use a case study to support the conceptual
description of the thesis and to investigate the complete ap-
proach of multi-level interfaces. Similar to our initial exam-
ple of the SPL DBMS and SPL Index, we identified our eval-
uation framework QuEval [36] as a possible subject. QuEval
itself is a framework that allows us to identify an optimal
index for a special use case in a DMBS (e.g., a concrete data
distribution to access data as fast as possible). QuEval uses
different products of an index as input and searches for an
optimal solution. In our previous work, we emphasize that
it is necessary to reorganize the framework QuEval and the

Index as dependent SPLs so that it is possible to address and
evaluate different index implementations [24]. For instance,
if the input data of the use case is based on double values,
the framework itself, all index implementations, and other
components have to support double values. This affects all
development steps so that the correctness of the dependen-
cies in the variability model (i.e., selection of the specific
feature), the implementation (i.e., method calls with differ-
ent data types) and the runtime behavior has to be ensured
(e.g., support of null values).
The framework QuEval including all dependent index im-

plementations is complex and it is hard to ensure a correct
combination of all features. Furthermore, if we change an
SPL Index or if we add a new one, the whole MPL with all
features must be checked again for correctness. Therefore,
we introduce our multi-level interfaces to ease the develop-
ment and to reduce the analysis complexity.

Multi-Level Interfaces

In Figure 2, we illustrate our interface concept using the
dependencies between SPL QuEval and SPL Index, which
supports our multi-level interfaces that introduce interfaces
on each development step. Based on these interfaces, we
can evaluate the dependency to the SPL Index without the
knowledge of the specific instantiated index implementation.
In detail, we introduce the concept of multi-level interfaces
and define the (1) variability-model interface, (2) syntacti-
cal product-line interface, and (3) behavioral product-line
interface. Using these interfaces, we aim to modularize the
dependencies between SPLs, such as the dependencies of
QuEval to the Index [24]. In Figure 3, we give a detailed
overview of each interface according to an SPL Index (this
is an adapted example of [38]).
As illustrated in our previous work, the variability-model

interface is a variability model itself [38], which we plan to
use as an agreement between the involved SPLs. For in-
stance, we define a new variability model as interface ac-
cording to the variability model of the SPL Index. We con-
sider the variability-model interface as specialized variability
model of the Index. This means that the set of valid configu-
rations of the interface is a subset of all valid configurations
according to the variability-model of the SPL Index. There-
fore, the original variability model supports range-queries,
but this feature is not available in the resulting variability-
model interface (see Figure 3) because it is not provided by
each SPL Index. Furthermore, the complexity of the result-
ing variability model of the SPL Index is reduced and, thus,
the combination with the variability model of SPL QuEval
is also reduced. Therefore, we expect a significant perfor-
mance improvement of analyses if we use dependencies to
the variability-model interface instead of direct dependen-
cies to the original variability model of SPL Index.
The syntactical product-line interface is an application

programming interface with variability information [38]. In
detail, the interface consists of classes, methods, and fields
that are supported by different configurations of the SPL
Index. For instance, the availability of each member (e.g.,
a method) depends on the configuration of the SPL Index
and can be filtered accordingly. Furthermore, the syntacti-
cal product-line interface is based on the variability-model
interface. Thus, we only use the existing features of the
variability-model interface and collect the available mem-
bers (see Figure 3). All other variability (i.e., other features



that are not included in the variability model) is hidden for
the SPL that wants to reuse the functionality. For instance,
the SPL QuEval has no knowledge about the implementa-
tion details of an SPL Index and knows only the variability
according to the variability-model interface. This means, we
present all method and field signatures with the information
in which feature the members are defined. All other meth-
ods that exist in the underlying SPL Index (e.g., according
to range queries) are not included. Furthermore, we assume
that a variability-aware programming interface can be used
to support the manual analysis of the source code by the
developer. As result, it is easier for the developer to com-
prehend the source code and, thus, to develop the SPL in a
more efficient way.

The behavioral product-line interface is the third inter-
face of our multi-level interface approach. This interface
is based on the syntactical product-line interface as well as
the variability-model interface and specifies the behavior of
each available method [38]. Therefore, we propose to use the
methodology of design by contract that we plan to extend to
fulfill the variability requirements. In Figure 3, we present a
small example. If we want to insert a point and the feature
UniqueKeys is selected, the method has to check that the
point is not already inserted in the point-container cont. If
the point is unique or the feature UniqueKeys is not selected,
the method has to return true and otherwise false. Using
the behavioral product-line interface, we assume that it is
possible to enable a modular analysis that detects runtime
violations more efficiently. Therefore, we want to investigate
the application of the behavioral product-line interface with
theorem proving.

5. RESEARCH METHODOLOGY
In this section, we present the main research methods that

we plan to utilize in the PhD thesis to investigate our hy-
potheses. Afterwards, we discuss respective threats to va-
lidity.

Research Methods

In general, we use our presented hypotheses of Section 3 as
guideline for our research procedure. Because of the various
targets according to the hypotheses, we need different strate-
gies to validate each hypothesis. We use different kinds of
evaluations; quantitative evaluations of real world SPLs on
the one side and user studies on the other side.

The presented hypotheses strongly depend on our multi-
level interfaces. Therefore, we plan a stepwise procedure,
in which we introduce each of the respective interfaces. For
each interface, we have to (1) refine the base concept (cf.
[38]), (2) create a prototypical implementation and (3) vali-
date our approach according to the presented hypotheses.

First of all, we have to search for an approach that can
be used as basis for the integration and development of our
interface concept according to the specific development step.
For instance, if we focus on our variability-model interface,
we search for an adequate modeling language that makes
an integration of our interface concept as easy as possible.
Afterwards, we can refine the specific interface concept with
respect to the identified approach and the results of the pre-
vious development interface.

Second, because of our aim to combine all interfaces to a
combined solution, we need an integrated development en-
vironment (IDE), in which we can integrate our multi-level

Variability-model interface

1 interface I Index {
2 //Features : Int , UniqueKeys
3 ArrayList<int [ ]> cont ;
4 //Features : Int , UniqueKeys
5 boolean i n s e r t ( int [ ] po int ) ;
6 //Features : Double
7 boolean i n s e r t (double [ ] po int ) ; /∗ . . . ∗/
8 }

Syntactical product-line interface

9 interface I Index {
10 ArrayList<int [ ]> cont ; //Point container
11 //@ requ i res point != nu l l
12 //@ i f (UniqueKeys )
13 //@ ensures ( e x i s t ( point ) => \ r e s u l t = f a l s e )
14 //@ && cont . s i z e () == \ old ( cont . s i z e ( ) )
15 //@ e l s e
16 //@ ensures cont . s i z e () == \ old ( cont . s i z e ())+1
17 //@ && \ r e s u l t = true
18 boolean i n s e r t ( int [ ] po int ) ; /∗ . . . ∗/
19 }

Behavioral product-line interface

Figure 3: Multi-level interfaces (adapted version
of [38]).

interfaces. Thus, we have to search for an environment that
is suitable for this integration. Afterwards, we use the re-
fined concept of the previous step, and integrate our inter-
face approach in this IDE.
Third, based on the IDE integration of the specific inter-

face approach, we plan to validate our hypotheses. Whereas
Hypothesis H2 can only be validated by a user study, the
Hypothesis H1 and H3 can be investigated using quantita-
tive evaluations. The detailed evaluation strongly depends
on the specific interface and is partly an open research ques-
tion.

Threats to Validity

The threats to validity strongly depend on the evaluation
procedure and, thus, we divide our threats to validity ac-
cording to a user study and a quantitative evaluation.

User Study. To investigate Hypothesis H2, we plan an ex-
emplary user study using our syntactical product-line inter-
faces [39]. We already published our concept for these inter-
faces and present a quantitative evaluation [39]. We use the
results of this evaluation to select an appropriate product
line for the planned user study that is able to present mean-
ingful results. Nevertheless, in a user study it is only possible
to investigate one or two SPLs and, thus, the generalizabil-
ity of the results is limited. However, using the results of our
previous qualitative evaluation, we expect significant results
according to the SPL that we investigate. Furthermore, the
results of a user study strongly depend on the subjects of
the experiment and the complexity of the presented tasks.



Therefore, we have to ensure that we select the subjects and
the tasks carefully.

Quantitative Evaluation. The threats to validity accord-
ing to the investigation of Hypotheses H1 and H3 strongly
depend on the applied subject system. In general, it is hard
to find real-world subject system in the domain of MPLs.
However, we have access to a lot of open-source SPLs that
are available in public repositories. Thus, it is possible to
divide these SPLs in smaller dependent SPLs that we can
use as base for our evaluation. The open-source SPLs were
also used by other researchers and, thus, we hope to increase
the acceptance by the research community.

Referring to the internal validity in both evaluation proce-
dures, we have to ensure a correct prototypical implementa-
tion. Therefore, we plan to investigate our implementation
using some small self-created case studies.

6. PRELIMINARY KEY RESULTS
In this section, we present our preliminary results accord-

ing to our main concept of multi-level interfaces.
First of all, we proposed the overall idea of multi-level in-

terfaces between SPLs [38]. In this context, we discussed the
main reasons for the usage of interfaces in MPLs. For each
interface of our multi-level interface approach, we present
first ideas according to the concept of the specific interface.
The paper is the starting point of the thesis and presents
a guideline and initial concepts that we can refine step by
step.

Although the interfaces of our multi-level interface ap-
proach strongly depend on each other, we start to refine the
concept of our syntactical product-line interface. Therefore,
we present a technique that can be used in single SPLs with-
out a variability-model interface [39]. However, we are sure
that the concept itself is easy adaptable according to MPLs
and will profit by the knowledge of the variability-model in-
terface. In detail, we proposed feature-context interfaces as
a non-variable interface that presents all code artifacts that
a developer can reuse in an SPL based on FOP. We pub-
lished the concept including a quantitative evaluation that
illustrates the benefits of feature-context interfaces and a
detailed description of the prototypical implementation in
FeatureIDE1 [42].

In our second step, we focus on the refinement, imple-
mentation, and evaluation of the variability-model interface.
The development of the variability-model interface itself is
still a remaining task, but we already published our ideas
related to the analysis of depending feature models [38]. We
plan to reuse these concepts for the analysis, in which we
evaluate our concept for the variability-model interface. In
detail, we plan to compare analyses with and without our
variability-model interfaces.

Besides the concepts of multi-level interfaces that describe
the core assets of the thesis, we also published a paper ac-
cording to our evaluation framework QuEval that presents
the necessity to reorganize the framework to an MPL [24].
In addition to the description of the running example, we
present problems using state-of-the-art techniques for the
implementation [24]. Thus, we consider QuEval as motivat-
ing example for the thesis.

1http://www.fosd.de/featureide

7. REMAINING WORK
The first remaining research part of our thesis investigates

the variability-model interfaces and their facility to improve
automated analysis. We published first ideas in our previous
work [38] and plan to improve the main concept in the next
month and to include the approach in FeatureIDE. After-
ward, we will execute evaluations that compare the results of
automated analyses according to the variability model with
and without interfaces (see Hypothesis H1). Using these
results, we plan a conference submission. The remaining
work for this main part of the thesis will require at least six
additional months.
Furthermore, we plan to execute a user study to eval-

uate the benefits of feature-context interfaces as syntacti-
cal product-line interfaces. In detail, we plan to develop
programming tasks that should be solved by undergraduate
students. We plan to divide the students in two groups and
compare the time to solve these tasks with and without the
help of our feature-context interfaces. For this user study, we
want to select subjects of our SPL lecture that takes places
every winter term. Therefore, we plan the execution of the
user study in the winter term 2014/2015. We plan to submit
the results of the study to a journal as extended version of
our previous work on feature-context interfaces [39].
Another remaining part investigates the concepts for the

behavior product-line interface. In this area, we already
published first ideas in our overview paper in which we de-
scribe the whole concept for the usage of interfaces between
SPLs [38]. The detailed concept is a still open task as well as
the detailed evaluation. Similar to the other main parts of
our multi-level interfaces, we plan a conference submission
with an evaluation part that investigates Hypothesis H3.
These concepts strongly depend on the syntactical product-
line interface and, thus, it will be the last part of the thesis.
For the development of the main concept including the eval-
uation, we plan to invest half a year.

8. CONCLUSION
Although software product lines improve the development

effort of similar products, their implementation and mainte-
nance is still a challenging task. Especially the overwhelming
variability in very large-scale systems complicates the de-
velopment task. Multi software product lines, which are an
arbitrary composition of software product lines, help to sup-
port developers through the development and maintenance
tasks. Although the concepts of multi software product lines
are promising, the support for analyses to ensure correct-
ness in each development step is insufficient. Therefore, we
propose the concept of multi-level interfaces between soft-
ware product lines to close the gap. In this proposal, we
present our overall idea of multi-level interfaces and present
our strategies to investigate their facility to improve analy-
ses on each development step. In detail, we present a set of
hypotheses that we plan to investigate throughout the thesis
process. Our first evaluations according to the syntactical
product-line interface present promising results that we want
to validate by a user study. We expect similar improvements
in all other steps of the product-line development.

Acknowledgments

We thank Thomas Thüm and Gunter Saake for suggestions
and constructive discussions of previous versions of the pa-



per. This proposal was accepted for presentation at SPLC
2014 Doctoral Symposium. The work is partially funded by
German Research Foundation (DFG, SA 465/34-2).

9. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. France.

Composing Feature Models. In Proceedings of the
International Conference on Software Language
Engineering (SLE), pages 62–81. Springer, 2009.

[2] M. Acher, P. Collet, P. Lahire, and R. B. France. A
Domain-Specific Language for Managing Feature
Models. In Proc. ACM Symposium Applied Computing
(SAC), pages 1333–1340. ACM, 2011.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake.
Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, 2013.

[4] S. Apel, S. Kolesnikov, J. Liebig, C. Kästner,
M. Kuhlemann, and T. Leich. Access Control in
Feature-Oriented Programming. Science of Computer
Programming (SCP), 77(3):174–187, 2012.

[5] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proceedings of the
International Software Product Line Conference
(SPLC), pages 7–20. Springer, 2005.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering (TSE), 30(6):355–371, 2004.

[7] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated Analysis of Feature Models 20 Years
Later: A Literature Review. Information Systems,
35(6):615–708, 2010.

[8] M. Bošković, G. Mussbacher, E. Bagheri, D. Amyot,
D. Gašević, and M. Hatala. Aspect-Oriented Feature
Models. In Proceedings of the International Conference
on Models in Software Engineering
(MODELSWARD), pages 110–124. Springer, 2011.

[9] A. Classen, Q. Boucher, and P. Heymans. A
Text-based Approach to Feature Modelling: Syntax
and Semantics of TVL. Science of Computer
Programming (SCP), 76(12):1130–1143, 2011.

[10] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
ACM/Addison-Wesley, 2000.

[11] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
Configuration through Specialization and Multi-Level
Configuration of Feature Models. Software Process:
Improvement and Practice, 10(2):143–169, 2005.

[12] D. Dhungana, P. Grünbacher, R. Rabiser, and
T. Neumayer. Structuring the Modeling Space and
Supporting Evolution in Software Product Line
Engineering. Journal of Systems and Software (JSS),
83(7):1108–1122, 2010.

[13] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser,
P. Grünbacher, D. Benavides, and J. A. Galindo.
Configuration of Multi Product Lines by Bridging
Heterogeneous Variability Modeling Approaches. In
Proceedings of the International Software Product Line
Conference (SPLC), pages 120–129. IEEE Computer
Science, 2011.

[14] H. Eichelberger and K. Schmid. A Systematic
Analysis of Textual Variability Modeling Languages.
In Proceedings of the International Software Product

Line Conference (SPLC), pages 12–21. ACM, 2013.

[15] J. Feigenspan, C. Kästner, S. Apel, J. Liebig,
M. Schulze, R. Dachselt, M. Papendieck, T. Leich, and
G. Saake. Do Background Colors Improve Program
Comprehension in the #Ifdef Hell? 18(4):699–745,
2013.

[16] G. Holl, P. Grünbacher, and R. Rabiser. A Systematic
Review and an Expert Survey on Capabilities
Supporting Multi Product Lines. J. Information and
Software Technology (IST), 54(8):828–852, 2012.

[17] A. Hubaux, P. Heymans, P.-Y. Schobbens, and
D. Deridder. Towards Multi-view Feature-Based
Configuration. In Proceedings of the International
Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ), pages
106–112. Springer, 2010.

[18] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
1990.

[19] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 311–320. ACM, 2008.

[20] C. Kästner, K. Ostermann, and S. Erdweg. A
Variability-Aware Module System. In Proceedings of
the Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA),
pages 773–792. ACM, 2012.

[21] C. Kästner, S. Trujillo, and S. Apel. Visualizing
Software Product Line Variabilities in Source Code. In
Proceedings of the International Workshop
Visualisation in Software Product Line Engineering
(ViSPLE), pages 303–313, 2008.

[22] A. Kenner, C. Kästner, S. Haase, and T. Leich.
TypeChef: Toward Type Checking #Ifdef Variability
in C. In Proceedings of the International SPLC
Workshop Feature-Oriented Software Development
(FOSD), pages 25–32. ACM, 2010.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented Programming
(ECOOP), pages 220–242. Springer, 1997.

[24] V. Köppen, M. Schäler, and R. Schröter. Toward
Variability Management to Tailor High Dimensional
Index Implementations. In Proceedings of the
International Conference on Research Challenges in
Information Science (RCIS). IEEE Computer Science,
2014.

[25] D. Le, E. Walkingshaw, and M. Erwig. #Ifdef
Confirmed Harmful: Promoting Understandable
Software Variation. In Proc. Int’l Symposium Visual
Languages and Human-Centric Computing
(VL/HCC), pages 143–150. IEEE Computer Science,
2011.

[26] M. Mannion, J. Savolainen, and T. Asikainen.
Viewpoint-Oriented Variability Modeling. In Proc.
Computer Software and Applications Conf.
(COMPSAC), pages 67–72. IEEE Computer Science,
2009.



[27] J. Meinicke, T. Thüm, R. Schöter, F. Benduhn, and
G. Saake. An Overview on Analysis Tools for Software
Product Lines. In Proc. Workshop Software Product
Line Analysis Tools (SPLat). ACM, 2014. To appear.

[28] B. Meyer. Applying Design by Contract. IEEE
Computer, 25(10):40–51, 1992.

[29] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming
(ECOOP), pages 419–443. Springer, 1997.

[30] M.-O. Reiser, R. T. Kolagari, and M. Weber.
Compositional Variability - Concepts and Patterns. In
Proceedings of the Annual Hawaii International
Conference on System Sciences (HICSS), pages 1–10.
IEEE Computer Science, 2009.

[31] M.-O. Reiser and M. Weber. Managing Highly
Complex Product Families with Multi-Level Feature
Trees. In Proceedings of the International Conference
on Requirements Engineering (RE), pages 149–158.
IEEE Computer Science, 2006.

[32] M. Ribeiro, H. Pacheco, L. Teixeira, and P. Borba.
Emergent Feature Modularization. In Proc. Int’l Conf.
Object-Oriented Programming Systems Languages and
Applications Companion (SPLASH), pages 11–18.
ACM, 2010.

[33] M. Rosenmüller and N. Siegmund. Automating the
Configuration of Multi Software Product Lines. In
Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages
123–130. Universität Duisburg-Essen, 2010.

[34] M. Rosenmüller, N. Siegmund, T. Thüm, and
G. Saake. Multi-Dimensional Variability Modeling. In
Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages 11–22.
ACM, 2011.

[35] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and
N. Tanzarella. Delta-Oriented Programming of
Software Product Lines. In Proceedings of the
International Software Product Line Conference
(SPLC), pages 77–91. Springer, 2010.

[36] M. Schäler, A. Grebhahn, R. Schröter, S. Schulze,
V. Köppen, and G. Saake. QuEval: Beyond
High-Dimensional Indexing à la Carte. PVLDB,

6(14):1654–1665, 2013.

[37] J. Schroeter, M. Lochau, and T. Winkelmann.
Multi-Perspectives on Feature Models. In Proc. Int’l
Conf. Model Driven Engineering Languages and
Systems (MODELS), pages 252–268. Springer, 2012.

[38] R. Schröter, N. Siegmund, and T. Thüm. Towards
Modular Analysis of Multi Product Lines. In
Proceedings of the International Software Product Line
Conference co-located Workshops, pages 96–99. ACM,
2013.

[39] R. Schröter, N. Siegmund, T. Thüm, and G. Saake.
Feature-Context Interfaces: Tailored Programming
Interfaces for Software Product Lines. In Proceedings
of the International Software Product Line Conference
(SPLC). ACM, 2014. To appear.

[40] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and
J. Sincero. Configuration Coverage in the Analysis of
Large-Scale System Software. ACM SIGOPS
Operating Systems Review, 45(3):10–14, 2012.

[41] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake. A Classification and Survey of Analysis
Strategies for Software Product Lines. ACM
Computing Surveys, 2014. To appear.

[42] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke,
G. Saake, and T. Leich. FeatureIDE: An Extensible
Framework for Feature-Oriented Software
Development. Science of Computer Programming
(SCP), 2014.

[43] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel.
Family-Based Deductive Verification of Software
Product Lines. In Proceedings of the International
Conference on Generative Programming and
Component Engineering (GPCE), pages 11–20. ACM,
2012.

[44] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and
G. Saake. Applying Design by Contract to
Feature-Oriented Programming. In Proceedings of the
International Conference on Fundamental Approaches
to Software Engineering (FASE), pages 255–269.
Springer, 2012.

[45] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala Component Model for Consumer
Electronics Software. IEEE Computer, 33(3):78–85,
2000.


