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Abstract

Design patterns are general solutions for recurring problems and
used to develop flexible, reusable and modular software with
Object-Oriented Programming (OOP). Prior studies have shown
a lack of modularity in object-oriented design patterAspect-
Oriented Programming (AOR)ims at improving flexibility, reusabil-
ity, and modularity in object-oriented designs. In a case study Han-
nemann and Kiczales have argued that AOP improves the imple-
mentation of GoF design patterrieature-Oriented Programming
(FOP) is a new programming technique that also aims to improve
the modularity in object-oriented designs. In this paper we com-
pare OOP, AOP, and FOP in a quantiative case study of design

pattern implementations. We evaluate the OOP, AOP, and FOP de-

sign pattern implementations with respect to modularity and show
that FOP performs best compared to OOP and AOP.

1. Introduction

Design patterns are accepted and well known approaches to imple
ment variable and reusable software usigject-Oriented Pro-
gramming (OOPJ13]. Although widely accepted, design patterns
lack in separating software into modules and caci®sscutting
concerng15].

Crosscutting concerns imply tangling, scattering and replication
of source code which results in complex software [16]. Classes
that include code of a crosscutting concern are closely coupled to

this concern (tangling) and to the other classes that also implement
this crosscutting concern. To exchange the crosscutting concern

the classes that include this concern have to be replicated. Thus
software including crosscutting concerns is monolithic, hard to
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Figure 1. UML notation of OOP classes and interfaces.

2. Background
2.1 Object-Oriented Design Patterns

In OOP methods and variables are merged glésses For com-
posing classes OOP provides mechanisms of inheritance and object
composition[[28]. Variability of software is achieved through poly-
morphism of classes [7].

Object-oriented design patterns propose advantageous class ar-
rangements for frequently recurring requirements [13]. The re-
quirements are described lesof interacting objects, e.g., if one
kind of object has to observe changes of another object. If a class
should play a role in one of these design patterns it is assigned to
implement interfaces or to inherit classes specific to its role.
Figurel 1 depicts the UML notion for OOP mechanisms [22].
The figure depicts the classEsamedLabel andButton, the ab-
stract clas&.abel, and the interfacButtonInterface. The class
Label declares the methagktText, the clas8utton defines this
method. Equivalently, the methad ick is declared in the inter-
faceButtonInterface and is defined in the clagutton. Inher-
itance and interface implementations are denoted by arrows while
inheritance implies solid arrows and interface implementations im-
ply dashed arrows. Associations between classes are denoted by
simple lines, e.g., the clagsabel includes one member of type

ButtonInterface.

maintain and reuse and thus development effort increases. Cross2.2 Aspect-Oriented Programming

cutting concerns are studied in ongoing research [4, 23, 27], and
numerous approaches aim to tackle them on different levels of
software development, e.g., during requirement engineering and

others|[1, 25, 8, 20]. Recently, advanced programming techniques,

e.g., Aspect-Oriented Programming (AORhd Feature-Oriented
Programming (FOP) gain momentum to overcome crosscutting

concerns [16, 24].
Several studies have shown the strengths of AOP and|[FOP [15, 14

The purpose of AOP is to modularize crosscutting concerns into

aspectg16].
We now explain the AOP mechanisms of Aspgdcalpopular AOP

language extension for Java, that are used in our case study [15].

Pointcut and Advice. The mechanism of AOP is the extension
of code implementing events that occur at runtime (so-cgtied

point9 [18]. The static representation of a runtime event in the

2]. These studies concentrated on single techniques or comparedsource code is callefbin point shadow Join point shadows are

AOP and FOP qualitatively.
In this paper we compare OOP, AOP, and FOP in a quantitative

for example method calls, constructor calls, or member access. A
pointcutdefines a set of join points to be extended. The extension

case study using the Gang-of-Four (GoF) design patterns [13]. Weto be invoked at the join points is calledlvice

did so to achieve a broader perspective of problems that occur fre-

quently in software development. We show that FOP outperforms
OOP and AOP with respect to modularity but also includes draw-
backs.

An example for pointcut and advicBCA) is given in Figure 2.
The aspediyAspect (Lines 12—26) extends the clasgedel and
Button. The pointcutLabelChangeCall (Line 13) refers to all

Lhttp://www.eclipse.org/aspectj/
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public class Label {
public void setText O){/x ...
}

*/}

public class Button {
ButtonInterface _b;
public void click(){
JE Y
myLabel.setText ("Button clicked")
[x . ..0xl
}
¥

public aspect MyAspect {

protected pointcut LabelChangeCall():
call (x Label.*(..));

protected pointcut LabelChangeExec():
execution (* Label.*x(..));

before() :LabelChangeCall () {/*...*/}
before() :LabelChangeExec () {/*...*/}
public String Label.Name;

public void Label.printName(){/*...x/}
public HashMap printer;

public void getPrinter O{/*...*/}

declare parents:Button implements ButtonInterface;
declare precedence:PriorAspect ,MyAspect;

Figure 2. Application of call and execution advice in AOP.

statements that invoke methods of the clasisel (call pointcut),
e.g., call statements for the metheétText. The corresponding
piece of advice (Line 15) is woven into the metheltick of the
classButton before(before advice) the call of the labels method
setText is invoked (Line 8). Advice also can be applied after (af-
ter advice) or around (around advice) join points.

The advice of the pointcutabelChangeExec (Line 16) refers to
the body of the methodetText (execution advice), i.e., the ad-
vice is woven into the methogketText of classLabel (Line 2).

While pieces of call advice, e.g., advice assigned to the point-
Cut LabelChangeCall, intercept the method caller, i.e., call ad-
vice only augments specific join points that perform the method
setText, execution advice, e.g., advice assigned to the pointcut
LabelChangeExec, intercepts the called object, i.e., execution ad-
vice augments all join points performing the methed Text.

Inter Type Declaration. Inter type declarations (ITD) are meth-

<<aspect>>

<<interface>>
Buttoninterface | yegare

MyAspect
AN 4 parents | Label.Name
— pc:LabelChangeCall
before:LabelChangeCall()
HashMap before:LabelChangeExec()

Label.PrintName()
getPrinter()
declare precedence

put()
get()
set()

o uses

Figure 3. Graphical notation of an aspect.

the same singleton instance of the aspect. In this case the aspect is
instantiated once.

Parent Declaration. Aspects can make a class to implement an
interface. Furthermore, aspects can declare a class to inherit from
another class.

In Figure 2 (Line 24), the aspetyAspect assigns the class
Button to implement the interfacButtonInterface.

Other AOP.  The categoryther AOPincludes compiler warnings

and errors and includes the declaration of advice precedence.

If a user defined constraint is violated by the classes, the aspect
weaver can be instructed to invoke compiler warnings or compiler
errors.

Precedence declarations define the ordering of advice if join point
shadows are advised by more than one aspect, e.d.,/Fig. 2, Line 25,
states that the advice of the aspeeiorAspect has to be applied
before the advice of the aspegtAspect is applied.

We depict our extended UML notion for aspects in Figure 3.
The shaded element depicts the aspigdispect of Figure 2 and
includes the PCA, ITD, and AFM. Pointcuts are abbreviated using
pc while advice is abbreviated by the type of advice (e.g., before
advice). We depict subclass declarations assigned by an aspect by
associating the aspect to the inheritance relationship of the classes
(associationleclare parents, Fig.[3).

2.3 Feature-Oriented Programming

FOP aims at feature modularity in software product lines where
features are increments in program functionality, e.g., feature trac-
ing [24, 6]. Typically, features are not implemented through one
single class [26, 5] but through differectllaboratingclasses and
adding a feature subsequently means to introduce code, e.g., hew
methods, into different existing classes [24, 26]. This code of dif-
ferent classes associated to one feature is merged intteahee
module In the following selecting features of the software is equiv-
alent to selecting feature modules. Assigning a feature to a config-

ods or variables that are inserted into classes and interfaces by aruration causes the new feature module to superimpose (refine) the
aspect and thus become members of these classes and interfacesd feature modules [6], i.e., methods and classes are added or get

respectively. Contrary to Java conventions, AspectJ allows to intro-
duce methods including a method body into interfaces [15].

In our example of Figure|2 the aspegtispect defines two ITD

i.e., to insert the member variablame (Line 18) and method
printName (Line 19) into the classabel.

Aspect Fields and Methods.  Aspects can contain members simi-

lar to members of an OOP class, i.e., aspects can contain methodsMethod Extension.

refined.

We systematize the mechanisms of the AHEAD Tool Suaeop-
ular FOP language extension for Java, into the categorigxirfis,
Method ExtensionsandOther FOR. Additionally, we describe the
OOP technique oSBingletonclasses as a category since we used
singleton classes to transform AFM into FOP.

FOP allows to extend methods of classes by

fields, or inner classes and interfaces. These aspect members caoverriding.
be invoked like methods of a class from inside the aspect, e.g., by An example is depicted in Figure 4. The feature modukesB
advice, or from outside the aspect, i.e., from the classes (using the(Lines 1-4) includes a clagsabel that is superimposed by the

aspect methodspect0f). The aspecilyAspect includes one as-
pect field and one aspect method (Fig. 2, Lines 21-22).

If aspect fields and methods (AFM) are invoked throeghect0f
and no extra pointcut mechanisms are declared (gegsflow),

refinement KTENSION (Lines 5-12), i.e., the refinemenkEEN-
SION superimposes the methedtText of the class.abel. The
methodsetText of the feature module EreNsION extends the

then every reference to the aspect members of one aspect refers téhttp://www.cs.utexas.edu/users/schwartz/ATS.html
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/1l feature module BASE
public class Label {

public void setText O){/x ...
}

*/}

/I feature module EXTENSION

refines class Label {

public void setText (){
Super () .setText ();

public String Name;
public void printName (){/x* ...
}

*/}

Figure 4. Refinement of a method by a FOP refinement.

Label includesP| Button
[Base setText() click() }
Label name
Extension | Name: String 4
setText()
printName()

Figure5. Refinements and classes in FOP.

setText method of the feature moduleaBE by invoking this su-
perimposed method usirgnper (Line 8) and defining additional
statements.

Mixins. Feature modules include mixin classes, that superimpose
and refine other classes. Mixins are members of mixin classes, e.g.

FOP where each refinement is figured by one class of an OOP
inheritance hierarchy.

3. Goal Statement
3.1 What Do We Adress?

AOP and FOP provide benefits compared to OOP but have difficul-
ties and strengths [3]. In this paper we aim to compare OOP, AOP,
and FOP implementations with respect to modularity.

3.2 Experimentation M ethodology
321 Criteria

We compare the design pattern implementations with respect to the
properties of modularity, i.ecohesiorandvariability, and thus we
follow existing studies of OOP and AOP [15, 14]. We define these
properties as follows:

Cohesion. An aggregate definition, e.g., a package, of different
program changes, e.g., the introduction of different classes or meth
ods into the software, can be referred to by a name and is there-
fore cohesive [17]. The named module, e.g., a package, cax-be e
changed and reused and thus development effort decreases.
Cohesive modules rarely reference to other modules and are thus
loosely coupled to other modules.

Our definition of cohesion is similar to the definitionladcality of
Hannemann et al. ar@ohesiorof Garcia et al./[15, 14].

Variability. If features of a modularized software shall be able to
change flexibly, the modules of the software have to be composed
in many different ways. Modules that are loosely coupled are pre-
required|[17]. Consequently, modules can be exchanged easily.
Tangling of code of different concerns of the software cactese
coupling of modules resulting in invariant, complex and monolithic

methods and member variables, that are introduced into an existinggofyvare [16].

class and extend the set of members of this refined class.

In Figure 4 the new methogrintName and the new membélame

is introduced by the feature modul&EENSION, i.e., by the mixin
classLabel (Lines 10-11).

We define that a subtype declaration of a mixin class is a mixin
too since this property is added to a class. Thus, mixin classes ca
introduce additional base classes for a refined class.

Singleton. A singleton class is an idiom to limit the number of

instances of a class. The singleton class is usually instantiated

Our definition of variability corresponds to the criteGampo-
sition Transperencef Hannemann et al. [15]

In addition, Hannemann et al. used the critdRiusabilityand
(Un)pluggabilityto evaluate the aspect-oriented design pattern im-

nplementationsiﬁ\S]. We do not use these criteria because we argue

them to be imprecise and not significant.

3.2.2 Schedule of Comparison

once and all subsequent requests to this class are forwarded to thi$Ve adopt the methodology of Hannemann et al. and Garcia et al.

unique instance [13].

Other FOP. This category include idioms of the arrangement of

to evaluate programming paradigms [15, 14]. Both studies com-
pared OOP and AOP on the base of a case study of design pattern
implementations. To analyze many diverse applications we reim-

classes, the ordering of feature modules and the qualification of plemented the 23 GoF design patterns in FOP and adopt the OOP

member variables. and AOP implementations. For different design patterns we im-

All classes, that are not nested in other classes are encapsulated iBIemented alternative FOP implementations (up to 7 per design
feature modules. The ordering of feature modules defines the order-yattern) resulting in 50 different FOP implementations. For com-

ing of extensions for one single method. Class members qualified parison we choose the implementation that is close to the AOP

as limited visible, e.g., qualified @sotected, cannot be accessed
from classes others than the class itself and its subclasses.

counterpart.

We compare the different implementations of the design pat-

Figure 5 depicts our graphical notion of FOP mechanisms that (arng by repeating the following schedule:

are used in Figurie|4. The feature modulessB and EXTENSION

are shaded and encapsulate the clakaesl andButton and a
mixin class refining the clagsbel. (TheString class of the Java-
API is not implemented inside the layer but is depicted to depict
special properties of thieabel class.)

We refer to classes and mixin classes inside feature modules by
(IX.]")Y, where Y is a (nested) feature module and Y is the single
mixin class.

We usedmixin layersto implement the GoF design patterns
in FOP [26]. Mixin layers is one implementation technique for

1. We review the aim of the pattern.

2. We give an explanation of the OOP, AOP, and FOP implemen-
tations each followed by a discussion of the specific pros and
ons.

3. We compare the OOP, AOP, and FOP implementations based
on the criteria given in Section 3.2.1.

4. We give a short summary of specific difficulties and strengths
of the OOP, AOP, and FOP implementations that were captured



public interface ComponentFactory {
public JLabel createLabel();

}..

Figure6. Type limitation through method declarations in the OOP
Abstract Factory implementation.

during the evaluation but are not relevant for the analyzed crite-

<<interface>>
ComponentFactory
createLable()
createButton()
getName()
| |
RegularFactory | | FramedFactory
createLable() createLable()
createButton() createButton()
getName() getName()

ria.

As a summary we give a table that aggregates and balace the
results of the evaluation. A "+” depicts that the technique performs
well with respect to the criterium while "-” depicts the lack of
the technique regarding that criterium compared to the other tech-
niques. "0” depicts the neutral evaluation regarding the criterium
and compared to the other techniques.

4. Case Study

In this section we evaluate the design patterns implemented in OOP,
AOP, and FOP in detail.

Hannemann et al. use JAvio implement design patterns in
OOP and use AspectJ to implement the aspect-oriented counter-
parts. We use the AHEAD Tool Suite for implementing the patterns

Figure 7. Abstract Factory through OOP.

<<aspect>> .
ComponentFactoryI mplementatlon

ComponentFactory.createLable()
ComponentFactory.createButton()

<<interface>>

ComponentFactory
createLable()
createButton()
getName()

I I
RegularFactory| | FramedFactory
createLable()
createButton()
getName()

getName()

in FOP.
4.1 TheAbstract Factory Design Pattern
411

Provide an interface for creating families of related or de-
pendent objects without specifying their concrete classes [13].

Intention

4.1.2 Implementation

OOP solution. Hannemann et al. applied the pattern to create
different kinds of one graphical user interface (GUI) [15].

Each factory class creates GUI elements of different kinds,
e.g., buttons or labels, and of different properties for each kind
of GUI element, e.g., one factory object creates framed or regu-
lar elements of different kind (e.gButton). All GUI elements
(e.g., of typeButton or Label), that are created by one factory
class (e.g.FramedFactory or RegularFactory), have compat-
ible properties, e.g., all elements are framed or all elements are
regular. The properties of GUI elements created by different fac-
tories differ and may be incompatible. Each GUI is created using
one factory and thus all elements of one GUI have compatible prop-
erties, the elements of different GUI may have different properties
because they were created by different factories. Hence, the choice
of the factory class implies the properties of the graphical elements
that are created. Different factory classes, FeamedFactory and
RegularFactory, can be exchanged with respect to the common
interface ComponentFactory. If a referencedFramedFactory
object is replaced by RegularFactory object the GUI elements
created subsequently are framed instead of regular and vice versa
without affecting a client that creates GUI.

Advantages Exchanging factory objects of different type (e.g.,
RegularFactory and FramedFactory) does not affect the
client that refers to the interfac@mponentFactory. A com-
patible configuration of properties for different GUI elements
to be built, e.g., whether all should be framed, is encapsulated
inside one graphical factory (e.FramedFactory).

Disadvantages The factory classes determine the type for each
kind of GUI element, e.g., a button, that can be created by the

3 http://java.sun.com/

AOP solution.
create GUI elements, e.g., of typetton, differently without con-

ditional statements or subclasses of the factory class. The meth-
ods that create the GUI elements are detached into the aspect

Figure 8. Abstract Factory through AOP.

factory. Consequently, all GUI elements that should be created
by the factory have to be of the type that is referred to by the
factory class for the according kind of GUI elements, e.g., the
methodcreateLabel of the factoryComponentFactory lim-

its the type of possibly created label objects to be subtype of
the classiLabel (Fig. 6, Line 2).

Different factories may create the same GUI element classes
and thus introducing code replication.

If the implementation of the methodgeateLabel Or create-
Button should vary for all factory classes in the same way ei-
ther all classes or the common superclass has to change. This
introduces code replication if both variants of the implementa-
tion should be available.

In the AOP implementation the factory class can

ComponentFactoryImplementation (Fig.[8) and are introduced
on demand.

Advantages The advantages of the OOP implementation hold for

the AOP implementation. The interfad@mponentFactory

can be extended by methods without code replication of the
class or its subclasses. Thus, variant implementations of the
methodscreateLabel oOr createButton can be varied for

all classes, e.gEFramedFactory, homogenously without in-
troducing code replication.

Disadvantages The AOP implementation does not work with-

out the aspectomponentFactoryImpl because the methods
createlabel andcreateButton are declared in the interface
ComponentFactory but never implemented by its subclasses.
This arises the cognitive distance.

The variable composition of the factory class may hamper com-
patibility of GUI elements applied to that factory class.
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createButton()
getName()
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RegularFactory || FramedFactory
createLable()
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getName()

getName()
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Figure9. Abstract Factory through FOP.

ComponentFactory
getName()
Base A A
RegularFactory FramedFactory
createLable()
createButton()
getName() getName()
A
Component— ComponentFactory
Factory— createLable()
Implementation createButton()

Figure 10. Abstract Factory through FOP reduced virtual meth-
ods.

FOP solution. We present 2 solutions for the pattern Abstract
Factory: solution A is close to the AOP implementation (Fig. 9).
Variable methods of the factory class, e.greatelLabel, are
detached into the feature moduled@PONENTFACTORYIMPLE-
MENTATION. Since we extend the interfa@mponentFactory
subsequently using method definitions we transformed it into the
abstract clas€omponentFactory.

Solution B is depicted in Figure 10. The different implementations
of the methodgreateLabel andcreateButton are transferred
completely to the feature moduleoO®PONENTFACTORYIMPLE-
MENTATION, i.e., no declarations are left in the feature module
BASE.

Advantages The advantages of the OOP and AOP implementa-
tions hold for the FOP solution A and B. Solution B works
without the componentFactoryImpl refinement because no
method is declared without being implemented in the feature
module BASE. This decreases the cognitive distance.

Disadvantages The variable composition of the factory class may
hamper compatibility of GUI elements provided by the config-
ured class.

4.1.3 Discussion

Cohesion.
sion:

Two issues have to be analyzed with respect to cohe-

¢ In the OOP implementation the code associated to variable
method implementations (e.g., to the methttkateLabel)
is closely coupled to the code of the factory classes that is
not variant, e.g., the methaggktName. In the AOP implemen-
tation the variant methods code of the factory classes (method
createLabel) is detached into the aspekimponentFactory-
Implementation but modules of the base program and the
module of the variant aspect are not separated. In the FOP im-
plementation the the different method implementations are sep-
arated, i.e., into the clag»mponentFactory and the accord-
ing mixin clasComponentFactoryImplementation. Compo-

Criteria OOP | AOP | FOP
Cohesion 0 0 +
Variability 0 + +

Table 1. Evaluation of the pattern Abstract Factory

<<interface>>|
Writer
write()

H.
main() <~

PrinterAdater SystemOutPrinter

write() printToSystemOut()

Figure 11. OOP implementation of the Adapter pattern.

nentFactory. Furthermore, the FOP implementation sepa-
rated the modules that are non-variant, efgxtCreator,
from the modules that are variant, e.g., the mixin classator-
Implementation.Creator.

¢ In the OOP implementation compatible objects to be created
by a factory object are defined inside one class. In the AOP and
FOP implementations compatible compositions of methods that
create GUI elements are scattered across the factory class and
the aspect and mixin clagemponentFactory respectively.

Variability. The OOP implementation does not allow to exchange
the definitions of the methodsreatel.abel andcreateButton.

The AOP implementation allows to exchange the implementation
of the factory methods (with respect to the interf@e@ponent-
Factory) without causing code replication. The FOP implemen-
tation equivalently does not imply code replication if the factory
method implementations should be exchanged for all subclasses.

414 Summary

A summary of the evaluation of the Abstract Factory design pattern
is given in the Table 1.

4.2 TheAdapter Design Pattern

421

Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of the incompatible interfaces [13].

Intention

4.2.2 Implementation

OOP solution.  Hannemann et al. applied the Adapter pattern to
invoke incompatible printer objects, e.g., of typestemOutPrin-

ter (Fig.[11), from the main method. The print request is in-
tercepted and forwarded to the according printer class by an
adapter object (e.g., of tyferinterAdapter). This adapter ob-
ject is invoked instead of the incompatible printer object of type
SystemOutPrinter. The adapter object adapts the request to fit
the incompatible printer object interfac8ygtemOutPrinter).
Different adapter classes can be exchanged with respect to the
Writer interface and thus different incompatible printer objects
can be used.

Advantages The usage of incompatible printer objects, e.g., of
type SystemOutPrinter, does not affect the calling main
method. They can be used polymorphically. The adaption
of the print request to fit the interface of the incompatible
printer classSystemOutPrinter is modularized into the class
PrinterAdapter. The printer implementations classes, e.g.,
SystemOutPrinter, do not have to implement a specific in-
terface to be used polymorphic by the main method.



‘ <sinterface>>
Writer
declare write()
<<aspect->  parenis P 7
PrinterAdapter

SystemOutPrinter

printToSystemOut()

SystemOutPrinter.write()
declare parents

Figure 12. Adapter pattern in AOP.

Main <<interface>>| | SystemOutPrinter
Base adaptee:Writer K> erter printToSystemOut()
main() write()
I 1
Printeradapter SystemOutPrinter
write()

Figure 13. Adapter pattern in FOP.

Disadvantages The adapter clasBrinterAdapter only can in-
voke public members of th&ystemOutPrinter class to per-
form the print request of the main method.

The adapting methodrite of thePrinterAdapter class has

to be bound dynamically to enable the polymorphic exchange
of different adapter objects — this corrupts performance and re-
source consumption [10].

AOP solution. In the AOP implementation the adapting method
writeisintroduced into the incompatible printer claSggtemOut-
Printer) by the aspecPrinterAdapter (Fig.|12). The incom-
patible printer classSystemOutPrinter is adapted to be us-
able by the methodhain. The introduction of different adapt-
ing methods, e.g.write, into the incompatible printer class
SystemOutPrinter prevents changes of the cla3gstemOut-
Printer to implement a specific interface, e.griter.

Advantages The advantages of the OOP implementation also
hold for the AOP implementation. The adapting function in-
troduced into the clasSystemOutPrinter via ITD has full

Main kK> Writer || SystemOutPrinter
Base main() ———'| printToSystemOut()

}

[Printeradapter write()

Figure 14. Alternative implementation of the Adapter pattern in
FOP.

Criteria OOP | AOP | FOP
Cohesion 0 0 0
Variability 0 + +

Table 2. Evaluation of the pattern Adapter

The translating methoglrite has advanced access to the mem-
bers of theSystemOutPrinter class. If mixin layers are used

to implement FOP each refinement is implemented as subclass
and thus access is prevented to private members of the super-
class, i.e., previous refinements. If FOP is implemented using
Jampacks theirite method can accessl members of the
SystemOutPrinter class that are introduced by prior refine-
ments.

Solution B decreases the number of virtual methods because
the adapting methodrite is inserted into the writer class stat-
ically bound which improves performance and resource con-
sumption.

Disadvantages The basic code of OOP classes does not work with-
out the refinemerRrinterAdapter.
If the SystemOutPrinter class has to be adapted in solution A
to be applicable for different clients different feature modules,
e.g., RINTERADAPTER, may introduce different versions of
the adaptingirite method that override each other.
Solution A demand for therite method to be bound dynam-
ically thus corrupting performance and resource consumption.

In solution B the clas@riter only can use public members of
theSystemOutPrinter class.

access to members of that class (based on the open class mech-

anism of AOP [21]). Therefore, the adapting metharite
can invoke protected and private methods of the incompatible
SystemOutPrinter class.

Disadvantages The essential code of OOP classes does not work
without the aspe@rinterAdapter.
The methodirite has to be bound dynamically although only
one variant may be present at runtime, thus corrupting perfor-
mance and resource consumption [10].
If the classSystemOutPrinter should be adapted to more
than one incompatible caller (e.g., the methedn) another
aspect may introduce anotherite method thus causing com-
piler errors.

FOP solution. We present 2 solutions for the adapter pattern: so-
lution A is close to the AOP implementation (see Figure 13). We in-
troduce the translating methedite into theSystemOutPrinter
class and thus the methadin uses that introduced method of the
SystemOutPrinter class.

Solution B is close to the OOP implementation (see [Fig. 14), i.e.,
we introduce the translating method into the adapter ¢lasser.
Solution B is applicable if the concrete writer does not have to vary
at runtime.

Advantages Solution A keeps the advantages that hold for the
OOP implementation.

4.2.3 Discussion

Cohesion. The techniques OOP, AOP, and FOP are equivalent re-
garding the cohesion in the analyzed implementation of the adapter
pattern. That is because thempleteclassPrinterAdapter was
transformed into an aspect in the AOP implementation and into a
refinement in the FOP implementation respectively.

Variability. In OOP exchanging the adapter, eRrinterAdap-

ter, does affect thenain method since it has to instantiate a
different class. In the AOP and FOP implementations the adapting
methodwrite can be exchanged flexibly without changes to the
main method, because this method does not refer to the adapter
class but directly to thBystemOutPrinter class.

424 Summary
A summary is given in Table 2.

4.3 TheBridge Design Pattern
431

Decouple an abstraction from its implementation so that the
two can vary independently [13].

Intention

4.3.2 Implementation

OOP solution. Hannemann et al. applied the pattern to de-
fine composes and complex operations, edgawGreeting or



drawText of a Screen class (Fig. 15), based on different versions
of primitive operations, likeprintLine andprintDecor. These
primitive operations are detached to the clasdesssCapital-
Implementation andStarImplementation. The different im-
plementations of the primitive operations including classes£s-
CapitalImplementation and StarImplementation) can be
exchanged with respect to the interfaereenImplementation

and thus the definition of the composed operations can be reused
The composed operations, e grawGreeting, are defined in the
classednformationScreen andGreetingScreen thus extend-

ing the interface ofceen objects?

The interface of a complex object is implemented using an primi-
tive interface that forwards calls to different implementing classes.

Advantages The interface ocreen objects and its implementa-
tion can be extended independently. Changing the implementa-
tion of aScreen object at runtime does not affect clients, like
themain method.

Disadvantages If the class hierarchy implementing the primi-
tive operations, e.gScreenImplementation, should be ex-
changed, i.e., the static type of the classes implementing the
primitive operations should be exchanged, the cksseen

Screen
implementor:Screenimplementation
setimplementor()
drawText()
drawTextBox()

T T
InformationScreen || GreetingScreen
drawlnfo() drawGreeting()

Abstraction—
Implementation

interface:
Screenlmplementation
printLine()
printDecor()
printText()

Base

i
Starimplemenation
printLine()

printDecor()

i
CrossCapitallmplemenation
printLine()

printDecor()

printText() printText()

Figure 18. Complexity reduced implementation of the Bridge pat-

ternin FOP.

Criteria OOP | AOP | FOP
Cohesion - 0 +
Variability 0 + +

Table 3. Evaluation of the pattern Bridge

has to be changed or extended — this either demands for code

replication or invasive changes. Consequently, classes that im-

plement the primitive operations, e.grintLine, have to im-
plement the interfacBcreenImplementation.

The primitive operations, e.orintDecor, inside theScreen
class forward requests to the classes implementing the primi-
tive operations, e.g., to the claSsarImplementation, thus
decreasing performance. The methods implementing the prim-
itive operations inside th&tarImplementation class have to

be bound dynamically to be polymorph regarding the interface
ScreenImplementation thus corrupting performance and re-
source consumption.

AOP solution. The AOP implementation extracts the primitive
operations, e.gprintDecor, (the forwarding methods) into the
aspectibstractionImplementation (Fig.[16). Additionally the
class to implement the primitive operations, e:reenImple-
mentation, is defined by the aspect.

Advantages The advances of the OOP implementation also hold
for the AOP implementation. Different classes, edgossCa-
pitalImplementation, that implement the primitive opera-
tions, likeprintDecor, do not have to be subtype of a common
interface.

Disadvantages The program does not work without the aspect.

FOP solution. We present two solutions for the Bridge design
pattern: solution A (Figl 17) is close to the AOP implementa-
tion, that is, the methods that forward the primitive operations
(i.e.,Screen.drawText) are detached into the feature module-A
STRACTIONIMPLEMENTATION. Additionally, the mixin class of
this feature module defines the class that implements the primitive
operations, e.gScreenImplementation.

Solution B is depicted in Figure 18. Since no method im-
plementation and member reference is left inside sheeen
class, we omit this class but transformed Bwreen mixin into

the new super-class of the composed operation classes (e.qg.

InformationScreen)

Advantages The advantages of the OCdhd AOP implementa-
tions hold for the FOP solution A.

4To invoke methods of th€&'reetingScreen class that are not declared in
the Screen class casts have to be performed.

Solution B reduces the number of classes by omitting the ab-
stract clas8ase.Screen and the number of methods that are
bound dynamically, e.g.drawText, thus improving perfor-
mance and resource consumption.

Disadvantages The basic implementations (inside the feature
module BAsE) do not work without applying the refinement
ABSTRACTIONIMPLEMENTATION.

4.3.3 Discussion

Cohesion. In the OOP implementation the code regarding the
definition of complex operations, e.@rawText, is coupled with
code regarding variant implementations of the primitive operations.
The AOP implementation separates the variant class members from
the essential but lacks in separating the modules that implement
variant and invariant behavior respectively. In the FOP implementa-
tion the variant primitive operations are decoupled from the essen-
tial methods by detaching and the modules implementing variant
and invariant operations are separated.

Variability. Inthe OOP implementation only classes can be used
to perform the primitive operations that implement the needed
methods and that are subtype of the interfeseenImplementa-
tion.

In the AOP and FOP implementation every class that provides ac-
cording method definitions can be assigned to perform the primitive
operations — they do not have to implement a common interface.

434 Summary

Since the system does not work without an aspect, the aspect must
have been planned and prepared from the beginning. Therefore it
is questionable whether it is worse to transform the inheritance tree

in OOP design instead of using the aspect that is hard to trace.

An overview over the evaluation of the Bridge pattern is given in

Tabld 3.

4.4 TheBuilder Design Pattern

The Builder pattern is applied to create different complex docu-
ments.



Screen <<interface>> ]
implementor:Screenimplementor SC_ret_anImplementatlon
drawText() printLine()
drawTextBox() printDecor()

% % printText()

I
GreetingScreen | |InformationScreen | |Starimplemenation ||CrossCapitallmplemenation
drawGreeting() drawlInfo() printLine() printLine()
printDecor() printDecor()
printText() printText()

Figure 15. OOP implementation of the Bridge pattern.

<<aspect>>
Abstractionmplementation
Screen.implementor:Screenlmplementation
Screen.drawText()
Screen.drawTextBox()
Screen.setimplementor()

<<interface>>
—<interfaces> Screenlmplementation
Screen printLine()
drawText() 4 printDecor()
drawTextBox() printText()
| | 1 |
InformationScreen || GreetingScreen || CrossCapitallmplemenation || Starimplemenation
drawlInfo() drawGreeting() printLine() printLine()
printDecor() printDecor()
printText() printText()

Figure 16. AOP implementation of the Bridge pattern.

e - Y
<<interface>>
Screen Screenimplementation
drawText() printLine()
drawTextBox() printDecor()
printText()
Base ‘ ‘
[InformationScreen || GreetingScreen| | [Starimplemenation|CrossCapitalimplemenation
‘ drawlInfo() H drawGreeting() ‘ printLine() printLine()
printDecor() printDecor()
L printText() printText() )
e DY
Screen
Abstraction— implementor:Screenimplementation
: setimplementor()
Implementation drawText()
drawTextBox()
S )
Figure 17. Direct implementation of the Bridge pattern in FOP.
441 Intention Creator String
. . . representation:String —— append()
Separate the construction of a complex object from its rep- processType() toString()
resentation so that the same construction process can create processAttribute() set()
different representations [13]. processValue()
getRepresentation()
4.4.2 Implementation
OOP solution.  Different complex objects (text and XML docu- - Ogéfgggém - 0§6“2'5$;§(§(g°’
ments) are created/initialized by concrete Builders that compose processAttribute()| | processAttribute()
the documents out of parts, e.g., attribute names and values. The processValue() processValue()
concrete Builders implement the common abstract dlasator getRepresentation()
which is referenced by a client that uses the Builder classes. The - - -
complex document to build is hold in a document representation Figure 19. OOP design of the Builder pattern.

member of typeString.
Figure_19 depicts the concrete Builder classestCreator
andXMLCreator. These classes can vary with respect to the com-
mon abstract classreator without a client, that only references
the Creator class, has to change. Hence, the client is unaware of
the concrete format of the complex document it is building. A mem- ber variable of typetring (Fig.[20, Line 2) holds the document



public abstract class Creator { 1| public aspect CreatorImplementation {
protected String representation; 2| public String Creator.representation;
public abstract void processAttribute 3| declare error:
(String newAttribute); (set(public String Creator+.representation)
} 4 |l get(public String Creator+.representation))
5 && ! (within(Creator+)
6 |l within(CreatorImplementation)):
public class TextCreator extends Creator { 7 "variable result is aspect protected. Use
public void processAttribute(String newAttribute){ getResult () to access it";
representation.append("Its "+newAttribute+" is "); 8|}
}
}
Figure22. Access limitation to class members in AOP.
Figure 20. Abstract and concrete Builder classes in OOP.
1| refines class Creator{
<<Aspect>> . String g N protected String representation;
Creatorimplementation append()

Creator.representation:String | | toString()
Creator.getRepresentation() || set()
Ldeclare error

Figure 23. Member shielding in the FOP implementation.

<<interface>>
Creator
b Eiﬁﬁiﬁiﬁﬂi&eo introducing this member using a different type for it. _
processValue() The document representation member is hidden by the inter-
getRepresentation() faceCreator. Hence, exchanging the document representation

member does not affect the clients, that use Builders to create
e — T ! documents. (The Builders public interfaceeator does not

Crealer | [ Crestr change)

processAttribute() processAttribute() Disadvantages Classes that are used for the document represen-

processValue() P":;eSSVa'U‘iOt, tation member, e.gString or File, have to fulfill different
getRepresentation() properties. The builder classsxtCreator andXMLCreator

call methods of the document representation member directly,
e.g., the methodppend (the called methods are depicted in
the String class of Figuré 2[f) The Builder classes require

Figure21. AOP design of the Builder pattern.

representation in XML or text format and is manipulated directly these methods to be implemented in every class that is used for

by the concrete Builders (e.TextCreator, Line 8)3 the document representation member but they do not reference
an explicit interface class. If other classes, likele, should

Advantages The concrete Builder classes, e.gMLCreator, be used to hold the document representation, then they have to

can be exchanged at runtime due to the uniform superclass  provide this implicitely required interface.

Creator. Thus, different complex documents (e.g., XML or

text documents) can be built by a client that only is aware of the FOP solution. We present two FOP solutions: solution A is close
uniform abstract clas@reator. to the AOP implementation (Fig. 24). The document representa-
tion member is introduced via a mixin. To shield the document
representation member from external access, the according mem-
ber variable is qualified as inaccessable for classes others than the
Creator classes and subclasses, i.e., it is qualifiedragected
(Fig.[23, Line 2).

Figurel 25 depicts solution B that allows to exchange the concrete
format of the document, i.e., text or XML, only at compile time but
not at runtime. We introduce the functions to build text or XML

AOP solution. Hannemann et al. introduce additional flexibility ~documents directly into théreator class using mixins. Hence,

to the OOP solution of the Builder pattern by detaching the doc- the interface of the clasireator is not declared explicitly by an
ument representation member from thesator class and encap-  interface class but is assembled at compile time by superimposing
sulating it into an aspect (Fig. 21). Figlire| 22 depicts an excerpt of the mixin classes of the feature modules.

the aspecCreatorImplementation that introduces the member

of the document representation into the interfeceator via IDT
(Line 2). Furthermore, an error declaration shields the new docu-
ment representation member from access by classes others than the
Creator class and subclasses (Lines 3-7).

Disadvantages The document representation member — here of
typestring (cf. Fig.]19) —is fixed. If the type of the document
representation member should vary, e.g., the member should
become of typerile, and both variants should be available,
the abstract clasGreator has to be extended or manipulated
and thus code replication of tlizeator class and subclasses,
e.g.,XMLCreator, is introduced.

Advantages Solution A allows to replace the concreteeator
classes (e.gXMLCreator) at runtime because they implement
a common interface, i.e., solution A allows to replace the com-
plex document, that is build, at runtime.

The type of the document representation member, &tging

Advantages The advantages of the OOP implementation hold for ~ Or File, can vary without replicating thereator class or its
this AOP implementation. The static type of the document rep- subclasses because the member is detached into a mixin class.
resentation member can vary by applying different aspects each ~ Solution B decreases the overhead that is needed for runtime
configuration and that is caused by dynamic binding, e.g., for
5We applied minor renamings to the implementation to improve compre C++ implementations. Java implementations are not improved
hensibility. [15] implied that the document representatiomrber fulfills
differentString operations. 6To improve the comprehensibility we renamed some operations.




( Creator h Criteria OOP | AOP | FOP
processType() CO.heS'i.OH 0 0 +
processAttribute() Variability 0 + +
processValue()
getRepresentation()
ez A Table 4. Summarized evaluation of the Builder design pattern.
TextCreator XMLCreator
processType() processType() -
processAttribute() processAttribute() _ QIICK
processValue() processValue() description: ActionEvent ActionEven
getRepresentation( hasShiftMask()
(. Y hasAltMask()
e = D\ hasCtriMask()
S rlng <<interface>>
Clreeliel= . repres%;?;tigrz:smng append() EEREE P l i ---
Implementation - toString() ' handleClick() !
getRepresentation() set() | <> |
C ) | | |
- - _ ActionListener Button Panel Fram
Figure 24. Straight forward transformed FOP design of the actionPerformed() | | handleClick() || handleClick() | | handleClick()

Builder pattern.

Figure 26. OOP implementation of the Chain of Responsibility

pattern.
' 0
Creator S‘””SO
- appen tation:Stri ) . . . .
Implementation | toString() ;;ijg:‘e:;g?aﬂoﬂ? sion. In the AOP implementation the code associated to variant
L set() ) types of the document representation member is detached from
e = ) the clasreator into the aspecCreatorImplementation,
Cr%e_atoro i.e., but the variant extending aspects are not separated from the
rocess e H 5 H
TextCreator grocess A{tfibuleo code that is not variant, e.gextCreator. In the FOP imple-
processValue() mentation code regarding variant types of the document rep-
Builder ~ ~ resentation is not coupled but cohesively separated in feature
e Y
reator modules.
processType() o . X
XMLCreator processAttribute() Variability. In the OOP implementation the type of the document
processvalue() representation member in the cla@seator is fixed. Exchang-
getRepresentation() . h b lead ith d li . . .
L L J) ing the member type leads either to code replication or invasive

changes and thus worsen reusability and complexity [12].
Figure 25. Static composition of the Builder class. AOP and FOP improve variability through decoupling the Builder
classes TextCreator, XMLCreator) from their document rep-
. . ) resentation members. In the following document representation
with respect to performance since in Java all methods are bound membpers of different types, e.§sring, can be used by the XML
dynamically [9]. and text Builder classes

Disadvantages In solution A the required properties of the classes,

that are used for the document representation member, are#44 Summary
given implicitly (similar to the AOP implementation), e.g., the  In the code documentation Hannemann et al. admit that no advan-
methodappend is required by the Builder classes. tage associated to the modularity is provided by the AOP imple-
Solution B does not allow to replace the concrete Builder im- mentation. A summary of our evaluation of the Builder implemen-
plementation, i.e., the format of the complex documents that tations is given in Table 4.
are build (text or XML), at runtime.

45 The Chain of Responsibility Design Pattern

4.4.3 Discussion

451 Intention

Cohesion. To evaluate the different implementations we have to Avoid i h d f . ver b
consider different aspects: void coupling the sender of a request to its receiver by

giving more than one object a chance to handle the request.
In OOP the initialization of the complex document is coherently Chain the receiving objects and pass the request along the
implemented in the clag&xeator. In the AOP implementation chain until an object handles it [13].
the document representation member is detached and the code
regarding the Builder definition (clas&eator) is scattered 452 Implementation
across the clas¥xeator and the aspeCireatorImplementat— OOP solution
ion. In the FOP implementation the document representation '
member of theCreator class is detached into the refinement
CREATORIMPLEMENTATION, i.e., the code associated to the
Creator class is scattered across the feature moduleseB
and GREATORIMPLEMENTATION.

Hannemann et al. used the pattern to allow differ-
ent graphical objects (handlers) to perform actions when a button is
clicked. We present two solutions. We refer to the approach of Han-
nemann et al. as solution A, see Figure 26. A click on a button is
coded into an object of the tyga ick that is forwarded to different
handler objects, e.g., of tyBatton, Panel, or Frame. After ana-

The OOP implementation couples code of different concerns, lyzing the overgivertlick object, e.g., using thélick.hasCtrl

i.e., the variant types of the document representation membermethod, each invoked handler object decides either to perform ac-
(e.g.,String or File) and the Builder methods, that use this tions on its own or to forward th€lick object to the next possi-
member but are invariant, into one class which decreases cohe-ble handler. Hence, each handler, e.g., of t§peme, refers to a
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Figure 27. Alternative OOP implementation of the Chain of Re-
sponsibility pattern.

succeeding handler object potentially performing actions based on
this click — consequently a recursive chain of handler objects re-
sults. The succeeding handler object, e.g., of Baeel, of each
preceeding handler object, e.g., of tyfeame, can be exchanged
with respect to the interfacglickHandler, i.e., the chain can be
adapted]

We implemented an alternative solution B that uses a hashmap
managed by a singleton class to define the succeeding handler ob
ject of a given handler object (Fig. 27), i.e., to determinebtase1
object as succeeding handler of theame object.

The graphical elements that potentially handle a click also can be
referred to by a iterative list inside tlBatton class (not depicted).

Advantages Objects, that can perform actions in response of a
click on a button, e.gFrame, can be assigned flexibly to the
clicked object of typeButton. Hence, the class of the objects
triggering the chainKutton) is not affected and does not have
to change when the chain differs.

Disadvantages There is no guaranty, that any handler object as-
signed to the chain of the button perform actions after a click
on the button at all.

The classes of the objects assigned to the chain have to pro-

vide the chain-specific methods, i.handleRequest and
acceptRequest, and have to be subtype of the interface
ClickHandler.

In solution A the handler classes, e.§rame, can only be

) <<aspect>>
<> ChainOfResponsibilityProtocol o)
after:Trigger:receiveRequest(Handler,Request)
A pointcut: eventTrigger()
T——r— |getSuccessor() B—| ek - - - -
I setSuccessor() 1
} Handler.acceptRequest() |
! declare Z} .
14 parents
L Sraspestad doClick()
Click ClickChain -
53]

description:ActionEvent
hasShiftMask()
hasAltMask()
hasCtrIMask()

[Button,Frame,Panel].acceptRequest()
[Button,Frame,Panel].handleRequest()
pc:eventTrigger()

declare parents

A on e
actionPerformed()

Figure 28. AOP implementation of the Chain of Responsibility
pattern.

objects. The hashmap is manipulated using aspect methods, e.g.,
setSuccessor, i.e., the order of chain handlers is determined by
manipulating the hashmap.

The invokation of the chain is applied using PGAréntTrigger)

that provides the clicked button object and the ck object®

Advantages The advantages regarding the OOP implementation
are kept. Every class, e.®anel, can be assigned to be han-
dler of a click — the required methods and inheritance decla-
rations are inserted by th&lickChain aspect. The manage-
ment of the handler objects in the chain is merged into the
ChainOfResponsibilityProtocol aspect, that is, the dec-
laration of the respective successor of a handler is not scattered
across the handler classes, eFgame.

Disadvantages There is no guaranty that actions are performed at
all in response of a click by any assigned handler object.

FOP solution. We present three different FOP implementa-
tions for that pattern. Solution A is close to the AOP imple-
mentation, see Fig. 30. We extend the class of the clicked ob-
jects Button) to invoke the chain, i.e., the action listener de-
fined inside the clas8utton. To extend the anonymous class
Actionlistener (Fig.[29) we have to extract the class into the
classMyActionListener, we refined this class to invoke the re-
acting handler objects.

The order of handler objects to be invoked after a click is defined
by manipulating the hashmap that stores the succeeding handler
objects for each invoked handler.

In solution B we extend the method that is called after the button is
clicked (methodButton.doClick), i.e., thecall pointcut turns
into an execution pointcut of that method effectively (Fig. 31).

used as chain elements since the succeeding handler reactingsqytion C is an extension of solution A. For solution C we de-

on clicks has to be defined at instantiation time. This draw-
back is not present in solution B since the successor is stored
coherently in th&€hainManager class.

AOP solution. In the AOP implementation the members of the
handler classes performing the evaluati@rdeptRequest) of
clicks and the actions to perform at clicksafpdleRequest) are
detached from the handler classes and are merged into the as
pectClickChain (Fig.[28). That is, the aspe€lickChain intro-
duces the methods associated to the chain, &cgsptRequest

and handleRequest, into the handler classes, e.§xame. The
order in which the handler objects are called to perform actions
based on a click is defined in a hashmap that is a field of the as-
pectChainOfResponsibilityProtocol that is filled with han-

dler objects, e.g., of typ&rame, and their succeeding handler

" Furthermore, it is possible to declare the member associdtisiicceed-
ing handler inside aabstract clas€1ickHandler — that improves cohe-
sion (not depicted).

tach the method evaluatin@lick objects écceptRequest) and
the definition of actions to be performed subsequently (method
handleRequest) of every class into feature modules, edpain. -
clickChain.chainElements.Frame, see Figuré 32. Addition-
ally, the invocation of the chain of handlers is detached into the
feature module EENTTRIGGERand can be exchanged.
Advantages The advantages of the OOP implementation also hold
for the FOP implementation. Additionally, every class can be
assigned to invoke actions when a button is clicked — the re-
quired methods, likeacceptRequest and handleRequest,
are introduced subsequently by the refinemenitc® CHAIN .
The chain is created by ordering the handlers using a hashmap.
In solution C the chain specific methods, elgndleRequest,
for all classes, e.gPanel, can vary independently.

8The button object clicked and ti@lick object are received by evaluating
the call of theAction Listener of the button to a hook methatbClick.
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Figure 30. FOP implementation of the Chain of Responsibility pattern.
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Figure 31. FOP implementation of the Chain of Responsibility pattern applying executidnead
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Figure 32. Finegrained FOP implementation of the Chain of Responsibility pattern.
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public class Button extends JButton implements
ClickHandler {
public Button(String label,
{
super (label) ;
this.successor = successor;
this.addActionListener ( new ActionListener () {
public void actionPerformed(ActionEvent ae) {
handleClick(new Click(ae));
}
1
}
}

ClickHandler successor)

Figure 29. Anonymous visitor class in the AOP implementation
that triggers the chain.

Disadvantages As in OOP and AOP, there is no guaranty that any

Criteria OOP | AOP | FOP
Cohesion 0 0 0
Variability 0 0 +

Table 5. Evaluation of the pattern Chain of Responsibility

changed without changing the event handling methods by re-
placing the feature modulerIGGEREVENTS (Fig.[32).

454 Summary

The curse of the dominant decomposition [27] causes code tangling
in the OOP and AOP solutions. The FOP implementation either de-
taches the code regarding the chain from the handler objects, e.g.,
of type Frame, and the implementation separates the class exten-
sions of the different handlers, i.e., two dimensions are separated.
In the AOP implementation Hannemann et al. used ITD to extend

object, that is assigned as handler to the chain, ever perform an interface hosted by the same aspect, we advice to use abstract

actions when a button is clicked.

45.3 Discussion

Cohesion.
sion, we have to consider two issues:

Cohesion of the chain: The OOP approach of the pattern scatters
the code associated to the chain, e.g., methatileClick,
across all handlers, e.g., of tyfrrame, that potentially in-

voke actions after a button is clicked. The AOP implementation 4.6.1

merges the pattern into tlieain0fResponsibilityProtocol

andClickChain aspects, hence, it stays scattered. In the FOP
implementation the pattern specific code is merged into the fea-

ture modulecHAIN.

Cohesion of the graphical element implementations: The OOP

To evaluate the implementations with respect to cohe-

classes for that.

The hashmap implementation enforces the programmer to imple-
ment a lot of typecasts. That is tedious and error prone [19].
Thereusableclasses lefPanel, Frame, andPanel areempty be-

side the hook methodoClick of the Button class that also is
empty. We argue that this design is bad.

A summary is given in Table 5.

4.6 TheCommand Design Pattern

Intention

Encapsulate a request as an object, thereby letting you pa-
rameterize clients with different requests, queue or log re-
quests, and support undoable operations [13].

4.6.2 Implementation

OOP solution.  Hannemann et al. apply the pattern to assign dif-

implementation merges the code associated to one class. AOPferent actions to a button element. The button refers to one action of

scatters the code regarding one graphical elementPexge],
across the respective clagsnel and the aspe@lickChain.

type Command by a field command (33). The type of object to per-
form the command, e.gduttonCommand Or ButtonCommand?2,

In the FOP implementation the code associated to one handleriscan be exchanged with respect to the interf@oemand. The

scattered across the feature modase and Q.ICK CHAIN.

In aggregation we balance the cohesion of the pattern implementa-

tions to be equivalent regarding the cohesion.

Variability. To evaluate variability, we have to consider two is-
sues:

Varyingtheclasses: In the OOP implementation the handler
classes, e.gErame, Panel, andButton, have to implement
the interfaceClickHandler.

methodclicked is invoked by the action listener and forwards
requests to the membesmmand.

Advantages Actions can be manipulated, extended, stored, and
made undone by manipulating tidemmand objects. The trac-
ing of different method invocations can be achieved by log-
ging the methods of a command class. The actions, e.g.,
ButtonCommand1, applied to the button object can vary at run-
time.
One command can be refered to by many classes thus improv-
ing reuse.

In the AOP implementation every class can be assigned to be Disadvantages If objects of a class, e.gButtonCommand1, shall

member of the chain, i.e. to handle a click event. The FOP im-
plementation similarly allows to assign every class to be a click

handler.
Varying the chain: In the OOP implementation the code regard-

ing the different chain elements is loosely coupled and thus
changes to the events invoking the chain, e.g., a click onto a

button, or the event handling methods, ehgndleClick, can

be applied through subclassing, i.e., the set of events can be ex-

tended only.

In the AOP implementation the definition of variant triggering
events (pointcueventTrigger) is tangled with the code of
the graphical elements of the chain, etgmdleRequest, thus
they can not be exchanged independently.

be invoked to perform actions, these classes have to implement
the interfaceCommand. The forwarding methodlicked de-
creases performance. The code regarding the variant action per-
forming objects is tangled with the main concern of the class
Button by the field and the methogdl icked.

The Command object, e.g., of typ@ButtonCommand1, can not

use private or protected members to peri actions after a
click. The code associated to tiBatton class is scattered
accross the classé®itton, Command, ButtonCommand and
ButtonCommand?2.

AOP solution.  The concrete action to invoke for eaglit ton ob-
ject is assigned inside a hashmap member of the aspantind-

In the FOP implementation the triggering events can be ex- Protocol (Fig. 34). The aspect methodetCommand andget-
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Figure 33. OOP implementation of the Command pattern.
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Figure 34. AOP implementation of the Command pattern.

Command manipulate the action objects, e.g., of typectonCom-

Criteria OOP | AOP | FOP
Cohesion 0 + +
Variability 0 + +

Table 6. Evaluation of the pattern Command

FOP solution. We present 2 FOP solutions: Our solution A is
close to the AOP implementation (Fig.|35). Similar to the AOP im-
plementation two hashmaps are used to assign the button to an ac-
tion performing class, e.gButtonCommand Or ButtonCommand?2,

and to assign the parameter of the command, e®r;iater ob-

ject. The hashmap is kept in a singleton object. The singleton object
is invoked by the method extensiBattonCommanding.Action-
Listener.actionPerformed to get the associated action object.

In solution B we omit the empty clasuttonCommand?2 in the
feature modul®@REBASE and BASE but introduce the fully defined
class in the feature modulelBTONCOMMANDING.

Advantages The advantages of the OOP and of the AOP imple-
mentation hold for the FOP implmentation.

Disadvantages Using hashmaps causes several type casts. Solu-
tion A scatters the feature module that implements the com-
manding intoPREBASE and GOMMANDING to avoid multiple
inheritance.

4.6.3 Discussion

Cohesion. In the OOP implementation the clag8sttonCom—
mand? is closely coupled to variantimplementations of the cked

mand1, assigned to buttons. The action regarding one button, i.e., Method of theCommand interface. In the AOP and FOP implemen-
the assigned hashmap element, is invoked by advice that extenddations the clasguttoncommand?2 is decoupled from the variant

the hook method of theut ton class €1icked) that is called when
aButton object is clicked.

Additionally, the AOP implementation assigns parameter objects,

e.g., oftypePrinter, to each action object, e.@uttonCommand1.

Command interface.

Variability. We have to consider 2 issues:
¢ In the OOP implementation classes that objects are assigned to

These action parameters are assigned in an additional hashmap perform actions after a click on a button, eEuttonCommand

for eachButton object. The action parameter is assigned by the
classes using the aspect methgelsReceiver andgetReceiver.

The aspecButtonCommanding introduces the commands to in-
voke after an event, e.¢executeCommand, into theButtonCom-
mand? class.

Advantages The advantages of the OOP implementation hold for
the AOP implementation. Additionally, tfBatton class is not
aware that its objects forward method call€tmmand objects.

Disadvantages The code of the methodlicked is scattered
across the respective claBattonCommand2 and the aspect
ButtonCommanding.

orButtonCommand?2, are restricted to be a subclass themand
interface and to provide the methegéecuteCommand. In the
AOP and FOP implementation every class can be used to per-
form actions after a click event. The subtype declaration regard-
ing the Command interface and thexecuteCommand method

are introduced subsequently.

¢ In the OOP implementation tfeatton objects depend on ob-
jects of the classe®mmand, ButtonCommand andButtonCom-
mand?2. In the AOP as in the FOP implementation the classes
Button, ButtonCommand, andButtonCommand2 can be used
with or without each other, they can vary flexible.

The hashmap implementation demands for multiple type casts 464 Summary

due to empty interfaces.

The reusable class@sttonCommand2 of the AOP and FOP im-

In this pattern multiple inheritance is introduced. The aspect plementations are empty despite an empty hook method thus the

ButtonCommanding implements the methodsExecutable

of the interfaceCommand using ITD. Due to parent declarations
the methodisExecutable of the interfaceCommand is inher-
ited twice.

benefit in reuse is questionable.

4.7 The Composite Design Pattern
4.7.1 Intention

The usage of a hashmap introduces performance drawbacks due

to indirect method calls (Two indirect method calls are needed
to compute the command object associated to a button-click

and to compute the parameter of the action object.)
Hook methods, e.gButton.clicked, have to be anticipated

and complicate the code but are necessary to invoke the action

performing classes, e.gButtonCommand and ButtonCom-
mand?2.

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets client treat individual objects
and compositions of objects uniformly [13].

4.7.2 Implementation

OOP solution. The pattern is used to model a file-system tree
(FST) including atomidile objects and composetiirectory
objects. TheDirectory andFile objects can vary with respect
to the interfaceFileSystemComponent (Fig.[37) and thus one
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Figure 36. Alternative FOP implementation of the Command pattern.
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Figure 37. OOP implementation of the Composite pattern.

compound directory object can refer to files or nested directory
objects.

Advantages Composed and atomic objects, i.Birectory and
File objects, can be exchanged without affecting the manipu-
lating class, e.g., theain method.

Disadvantages The methods manipulating the FST are scattered
across the interfadeileSystemComponent and its subclasses
File andDirectory. Equivalently, functions to be applica-
ble for the whole FST, e.ggetSize, are scattered. Compos-
ite classes, e.gEile or Directory, depend on the interface
FileSystemComponent to be reusable.

AOP solution.  In the AOP implementation the asp€eimposite-
Protocol merges the methods to compose the FST classes, e.g
CompositeProtocol.add, see Figure 38. That manipulates a
hashmap of a singleton object. Hence, the aspect is used as

singleton. The aspedileSystemComposition introduces the
recursive functionssubSum andprintStructure to be applied
on the FST.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
Methods to be applied onto the whole FST, e.g., computing the
sum of the tree elementsybSum), are merged into the aspect
FileSystemComposition.

Disadvantages Recursive methods, e.gprintStructure or
subSum to be performed on the FST, are scattered across the
aspectLompositeProtocol andFileSystemComposition
(the methodFileSystemComponent.printStructure that
is defined and uses the methodscurseOperation and
recurseFunction of the aspedtompositeProtocol (Fig[39,
Lines 13-18) and give over an anonymous visitor class (Line
14). Thus, the AOP implementation appears very complex com-
pared to the OOP implementation that is depicted in Figure 40.
The implementation of the recursive functiomsintStruct-
ure (Fig.[39) andsubSum introduces several indirections into
the control flow at runtime due to the hashmap evaluation and
the application of the visitor object.

The implementation of the methaaibSum for the clasFile

is tangled with the implementation of the methegbSum for
other classes. This also holds for faeintStructure method.
Furthermore, the definitions of the different methea®Sum
andprintStructure are coupled with each other in the as-
pect.

FOP solution.  We present 2 FOP approaches for that pattern: So-
dution A is close to the AOP implementation, see Figuré 41. The
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Figure 38. AOP implementation of the Composite pattern.

CompositeProtocol{
public Enumeration recurseFunction(Component c,
FunctionVisitor fv) {
Vector results = new Vector();
for (Enumeration enumM = getAllChildren(c); enumM.
hasMoreElements(); ) {// method calls to their
children
Component child = (Component) enumM.nextElement () ;
results.add (fv.doFunction(child));
}
return results.elements();
}
}
FileSystemComposition extends CompositeProtocol{

public int Directory.subSum() {
Enumeration enumM = FileSystemComposition.
getInstance () .recurseFunction(this, new
FunctionVisitor () {
public Object doFunction(Component c) {
return new Integer(c.subSum());
}
1D

int sum = 0;

while (enumM.hasMoreElements ()) {

sum += ((Integer) enumM.nextElement ()).intValue();
}

return sum;

Figure 39. AOP recursive function using an anonymous visitor
class and indirection to aspect.
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private static void
printStructure(FileSystemComponent comp) {
indent () ;

System.out.println(comp);

indent +=4;

for (int i=0; i<comp.getChildCount ();
printStructure (comp.getChild (i));

}

indent -= 4;

i++) {

Figure 40. External OOP implementation traversing an recursive

structure.
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Figure42. Alternative FOP implementation of the Composite pat-
tern.

FST-classes are assigned to the FST object using a hashmap in
the singleton clasBileSystemComposition. The recursive func-
tions are assigned to the FST-classes using mixins for each FST-
class. The visitor class&ssitor andFunctionVisitor are used

by the recursive methods.

In solution B (Figl 42) the recursive functions are assigned to each
class of the FST according to the type of the FST-class. We omit-
ted the visitor by invoking the children retrieved from the singleton
classFileSystemComposition directly (Fig.[43). The children

are retrieved (Line 5), traversed (Line 6), and directly invoked (Line
7). Additionally, the refinements that compose FST classes (e.g.,
feature module EESYSTEMCOMPOSITION) are separated from

the mixin classes of the FST classes (feature module $s-
TEMELEMENTS).

Advantages The advantages of OOP hold for the FOP implemen-

tations.

The code to compose the FST is merged into the singleton class
CompositeProtocol. The recursive functionsrintStruct-

ure andsubSum to be applicable for the FST are not scattered
but merged in the feature modulesLESYSTEMCOMPOSH
TION andMAKE COMPOSITEAFTER.

Solution B only introduces one indirection for retrieving the
child of one FST element out of a hashmap to compute
a recursive function. Figure #3 shows, that the child ele-
ments of one FST element are gathered from the singleton
FileSystemComposition (Lines 5-6) and are accessed di-
rectly (Line 7).

Disadvantages We used mixin layers to implement FOP, that en-

forced us to split the extension of tl@le class so that it can
access members that are introduced in the @ass.File.

4.7.3 Discussion

Cohesion.

We have to consider three issues for evaluating cohe-

sion of these implementations:

e OOP scatters the implementation of the recursive functions,

e.g., getSize, across the classeBileSystemComponent,
File, andDirectory. In the AOP implementation the imple-
mentation of each recursive function is scattered, eithSum
orprintStructure, across the aspedsmpositeProtocol,
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Figure4l. Direct FOP implementation of the Composite pattern.

public void printStructure(final PrintStream s) {

FileSystemComposition.indent ();

s.println("<Composite>"+this);

FileSystemComposition.indent +=4;

for (Enumeration _enum = FileSystemComposition.
getInstance () .getAllChildren(this); _enum.
hasMoreElements (); ) {
Component child = (Component) _enum.nextElement();
child.printStructure(s);

}

FileSystemComposition.indent -=4;

}

Figure 43. Internal FOP implementation traversing an recursive

structure without anonymous visitor.

andFileSystemComposition. FOP only scatters the code of

recursive functions, that have to access members of the base

class, e.g.subSum across the feature modulesKe COMPOS
ITE and MAKE COMPOSITEAFTER. Other recursive functions,

like printStructure can be implemented cohesively in the

feature modulenAKE COMPOSITE

FST element, i.e.File andDirectory, in each respective

Criteria OOP | AOP | FOP
Cohesion 0 0 0
Variability 0 0 +

Table 7. Evaluation of the pattern Composite

code of different FST classes and thus prevents variation. The
FOP solution (B) provides to exchange implementations of
single classes of the FST.

474 Summary

The code of Figure 39 and Figure 40 prints the composite structure
using AOP and OOP mechanisms respectively. We argue, that the
method of Figuré 40 is much more convinient to the programmer
than the AOP implementation (Fig. 139) that introduces multiple
indirections, anonymous classes and aspects.

A summary is given in Table 7.

4.8 TheDecorator Design Pattern
481 Intention

The OOP implementation merges the code associated to each  Attach additional responsibilities to an object dynamically.

Decorators provide a flexible alternative to subclasing for

class. In the AOP implementation the code regarding each  extending functionality|[13].
FST element class, e.File, is scattered across the aspects

CompositeProtocol, andFileSystemComposition. In the

4.8.2 Implementation

FOP implementation the code regarding the file system compo- oop solution. Hannemann et al. applied the pattern to enhance

nents is scattered across the feature modwkess COMPOSITE
andMAKE COMPOSITEAFTER.

In the OOP implementation the code to compose the FST, e.

the output of a printer objecCéncreteOutput) by introducing
additional characters into the printed string object. Decoration ob-
g.,jects (e.g., of typetarDecorator andBracketDecorator) are

the methodsdd or remove, is scattered across all classes and Used instead of the printer objects (of typencreteOutput).
interfaces. The AOP and FOP implementation merges the code The decorator objects refer to the printer object by an object ref-

to compose the FST in the asp@etpositeProtocol and the
feature module OMPOSITEPROTOCOLrespectively.

Variability. We have to consider 2 issues:

¢ In the OOP implementation the classes to act as file sys-
tem components are restricted to those implementing the

FileSystemComponent interface. In the AOP and FOP im-

erence and forward print requests to the referred printer object.
Before or after forwarding the requests the parameter object of
type String is enhanced by additional characters, e.g., brackets
(in classBracketDecorator) or stars (in clasStarDecorator).

To replace the printer objects, the decorator objects, e.g., of
type BracketDecorator, have to implement the same interface
Output, see Figure 44.

plementations every class can be assigned to be part of the FST'Advantages Decorator objects can be exchanged at runtime.

¢ In the OOP approach the implementation of single FST classes  The printer clas@utputImplementation can be exchanged
can vary independently. The AOP implementation tangles the without need for code replication or inheritance.
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Figure 46. FOP implementation of the Decorator pattern.

Figure 44. OOP implementation of the Decorator pattern.

Criteria OOP | AOP | FOP
Cohesion 0 0 +
ConcreteOutput | |BracketDecorator Variability 0 ¥ +
print() around:print()
Table 8. Evaluation of the pattern Decorator
Figure 45. AOP implementation of the Decorator pattern. 4.8.3 Discussion
Cohesion. In the OOP implementation the decorating code is
Disadvantages Decorators, e.g.BracketDecorator, include scattered across the clas§esputDecorator, StarDecorator,
forwarding methodgor all methods declared in the printer ~andBracketDecorator. In the AOP implementation the decora-
interface, e.gprint, thus decreasing performance. tion code is scattered across the aspects. In the FOP implementation
Decorator objects only can extend public members of the the decoration code is merged into the feature modite @RA-
printer objects. TION.

To decorate a method using the design pattern Decorator
at least this method has to be bound dynami€ally. the
implementation presented all methods of the printer class
ConcreteQOutput, e.g.,print, are bound dynamically thus
decreasing performance and improving resource consump-

tion [10].

Variability. In the OOP implementation classes that should be
decorated are restricted to implement an interface, eutput,

or to bind its methods dynamically. The AOP and FOP approaches
allow to decorate every method of every class although this method
might not be bound dynamically.

484 Summary

In the OOP implementation the decorating class has to implement
every method of the decorated object thus methods that are not aug-
A mented with statements but forwarded only decrease performance.
" Inthe AOP and FOP implementation no primitive forwarding meth-
ods are needed at all which improves the performance.

In the OOP implementation decorator objects can be exchanged
at runtime. In AOP the decoration of methods can be applied based
on dynamic properties of the control flow. FOP only provides the
static application of decorations.

AOP solution. To enhance the argument string of the printer with
additional characters, the aspegtarDecorator andBracket—
Decorator intercept the calls to the printer functions using PC
The argument string of each method call is gathered from the
PC and decorated with additional parameters. The originaht
method of the clasSoncreteOutput is invoked with the extended
parameter object. The decoration is applied or omitted based on
properties of the control flow.

Advantages Since single methods, likerint, are decorated, non An overview is given in Table]8.
decorated methods of thoncreteOutput class stay unaf- )
fected. 4.9 The Facade Design Pattern
Clients of the clasSoncreteOutput, €.g., themain method, 491 Intention

are not affected, if a decoration is applied.
No virtual methods are necessary, i.e., performance and re-
source consumption are improved.

Provide a unified interface to a set of interfaces in a subsys-
tem. Facade defines a higher-level interface that makes the

. . . subsystem easier to use [13].
Disadvantages We did not observe specific disadvantages for that

implementation. 4.9.2 Implementation
. . . OOP solution. The pattern is applied to hide the subsystem of
FOP solution. In our FOP_ implentation we e_Xtend th_e method classesfecoration, RegularScreen, andStringTransformer)
ConcreteQutput .print using method extensions. This method 4t is used to perform different operations that transform a string.
extension augments the parameter string to print. Instead, the facade object is invoked. The operation is implemented

Advantages The advantages of the AOP implementation hold for N the methodOutputFacade.printFancy, which invokes the
the FOP implementation. subsystem.

Disadvantages The decoration is applied statically, i.e., every call Advantages The interaction of a set of classes is modularized
to the method invokes the decoration unaffected by the calling  into the OutputFacade object and thus the complexity of the

object or the dynamic control flow. invoking classes decreases.
Disadvantages The pattern does not prevent direct access to the
91f the decorators would be subclasses of the decoratedepiifass (not subsystem components.

depicted).
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Figure47. OOP implementation of the Facade pattern.
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Figure49. FOP implementation of the Facade pattern.

AOP solution. The aspecfacadePolicyEnforcement restricts

Criteria OOP
Cohesion 0
Variability 0

AOP | FOP
0 0
0 0

Table 9. Evaluation of the pattern Facade

GUIComponentCreator
createComponent()

getTitle()
showFrame()

A

A

ButtonCreator LabelCreator
createComponent() createComponent()
getTitle() getTitle()

Figure50. OOP implementation of the Factory Method pattern.

Variability. The OOP, AOP, and FOP implementations are equiv-
alent regarding the variabilify)

494 Summary
A summary is given in Table 9.

410 The Factory Method Design Pattern
4.10.1

Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class
defer instantiation to subclassés [13].

Intention

4.10.2 Implementation

OOP solution. The pattern is applied to create a frame that in-
cludes a variant graphical object, e.g., of tyf@atton or JLabel.
The type of the element is determined by the methgesTitle

the access to the subsystem that performs the string transformation@nd createComponent, i.e., these methods create the graphical
If classes of the subsystem are invoked by classes other than the?Pi€ct that is put on the frame. These object creating methods are

OutputFacade class, a compiler warning is given.

Advantages The advantages of the OOP implementation hold for
the AOP implementation. The compiler warning introduced by

used by the metho@UIComponentCreator . showFrame that de-
fines the abstract algorithm. The implementations of these methods
can vary depending on the instantiated class, BugonCreator.
Subsequently we refer to the metheitbwframe asabstract algo-

the aspect supports the deve|opment of |Oose|y Coupled C|assegithm methodThe methods Creating the graphical ObjeCtS are called

but does not imply that.

Disadvantages We did not observe obvious disadvantages of the
AOP implementation

FOP solution. We transfered the OOP implementation into a fea-
ture module. That is, the metheadintFancy, invokes the subsys-
tem classe®ecoration, RegularScreen, and StringTrans-
former to perform an operation.

Advantages The advantages of the OOP implementation hold for
the FOP implementation.

Disadvantages The pattern does not prevent the client classes
which use the subsystem to directly invoke methods of the
subsystem classes.

4.9.3 Discussion

Cohesion. The OOP, AOP, and FOP implementations are equiva-
lent with respect to cohesion.

factory methods

Advantages An algorithm can be applied to elements of a variety
of types.

Disadvantages Clients of the factory method clas¥/ICompo-
nentCreator are closely coupled to the implementation of
the factory methods because the clients select the implemen-
tations by instantiating the respective subclass of the class
GUICompoenentCreator. The different graphical elements to
be put onto the frame have to implement the common interface
JComponent.

If the showFrame method should be exchanged or a new
abstract algorithm method should be introduced, either the
classGUIComponentCreator has to be replicated or changed

invasively. Both demand for replication of the subclasses
ButtonCreator andLabelCreator.

10The AOP compiler warning supports the developement of loosely
pled classes, which can be composed variable. Neverthbkesspect does
not introduce additional flexibility.
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Figure51. AOP implementation of the Factory Method pattern.

AOP solution. In the AOP implementation the variant abstract al-
gorithm methodshowFrame is transfered into the aspeteator-
Implementation thatintroduces iton demand. The aspegater-
nateLabelCreationImplementation overrides the factory method
createComponent Of theLabelCreator class.

GUIComponentCreator
createComponent()

getTitle()

AS

ButtonCreator
createComponent()

getTitle()

base

A

LabelCreator
createComponent()

getTitle()

AlternateLabelCreator
Implementation

LabelCreator
createComponent()

——

factory [
Extension

GUIComponentCreator
lastFrameLocation:Paint
showFrame()

Creator—
Implementation

Advantages The advantages of the OOP implementation hold for
the AOP implementation. If the abstract algorithm method
showFrame should be exchanged, no subclasses have to be
replicated since the inherited class is not exchanged.

Disadvantages Modules implementing different variants of the
software are not separated from modules implementing essen-
tial issues of the implementation.

FOP solution. We present two implementation approaches for
that pattern: solution A is close to the AOP implementation,
see Figuré 52. We detach the variant abstract algorithm method
showFrame into the feature module REATORIMPLEMENTATION.

The method extensioAlternatelLabelCreatorImplementa-
tion.LabelCreator.createComponent overrides the method
Base.LabelCreator.createComponent.

Solution B (Fig.[ 53) allows to compose the abstract algorithm
methods with the template methods statically. That is, the graphical

Figure52. FOP implementation of the Factory Method pattern.

GUIComponentCreator
button createComponent()
createTitle()
GUIComponentCreator
factory- label createComponent()
Methods createTitle()
ATEITEN ElEEE GUIComponentCreator
Creator— createComponent()
Implementation
Creator— GUIComponentCreator
. lastFrameLocation:Point
Implementation
showFrame()

elements of every frame may vary at compile time but are invariant
at runtime.

Advantages The advantages of the OOP and AOP implementa-
tions hold for the FOP implementation.

Solution A modularize variant extensions of the essential code
cohesively in the feature moduld CTORYEXTENSION.

Solution B reduces the number of methods that are dynamically

Figure 53. Alternative FOP implementation of the Factory
Method pattern.

Criteria OOP | AOP | FOP
Cohesion - 0 +
Variability 0 + +

bound because there are no subclasses. This improves perfor-

mance and resource consumption.

Disadvantages We did not observe disadvantages of the FOP im-
plementation A. In solution B the different factory methods,
e.g.,createComponent, can not vary at runtime.

4.10.3 Discussion

Cohesion. In the OOP implementation variant implementations
of the showFrame method are coupled with the essentdallCom-
ponentCreator method declarations (e.gcreateComponent
andgetTitle). The AOP implementation detaches variant exten-
sions of the essenti@IComponentCreator methods but scatters
different extensions across the aspértsatorImplementation
andAlternateLabelImplementation. In the FOP implementa-
tion the variant extensions of ti®IComponentCreator class are
merged in the feature modut@ CTORYEXTENSION.

Variability. In the OOP implementation the variation of the ab-
stract algorithm methoghowFrame causes either code replication

or invasive changes. In the AOP implementation the abstract algo-
rithm method can be exchanged flexible by exchanging the aspect,
e.g.,CreatorImplementation, to be applied — code replication

Table 10. Evaluation of the pattern Factory Method

is prevented. The FOP implementation allows to exchange the ab-
stract algorithm method without code replication by exchanging the

mixin classes, i.e., the feature modules.

4104 Summary

To override methods of final classes we advice the usage of OOP
inheritance if applicable instead of replacing the method using

around advice.

411 TheFlyweight Design Pattern

411.1

Using sharing to support large numbers of fine-grained ob-
jects efficiently [13].

Intention

411.2 Implementation

OOP solution. Hannemann et al. applied the pattern to store a

set of characters. To improve the resource consumption they only
store the extracted property of the type of characters and omit the
property of capitalization. Furthermore, whitespaces are stored by
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Figure 54. OOP implementation of the Flyweight pattern. base prmt()A x
CharacterFlyweight ||WhitespaceFlyweight
pem— L prini( print() )

Flyweightimplementation
getPrintableFlyweight()
createFlyweight()

Figure 57. Simplified FOP implementation of the Flyweight pat-

declalt; parents tern.
: FlyweigtProtocol : Criteria || OOP | AOP | FOP
g getFlyweight() § Cohesion + 0 +
K] createFlyweight() ] Variability 0 + +
v ® <<interface>> v
_LFlyweight | | Table 11. Evaluation of the pattern Flyweight
: <<interface>> :
\ PrintableFlyweight }
! print() ! ) . . .
| A AN | shared character flyweight objects are stored in a hashmap object
CharacterEivmeiaht | WhitesoaceEvweiaht of the singleton clasBlyweightprotocol. That singleton class
print() print() is manipulated by the clients, e.g., thein method, to retrieve
_ : : : flyweight objects.
Figure 55. AOP implementation of the Flyweight pattern. Solution B reduces the number of classes and feature modules

by omitting theFlyweight interface, see Figure 57. Hence, the
hashmap stores flyweight objects using the static type object (as
it is done anyway in the hashmap). Type casts are applied to turn
these objects (of typ@bject) into Flyweight objects. (The type
casts has been applied in solution A too, timesadditionaltype
casts are introduced.)

an additional class.

A pool of character objects (of typ€haracterFlyweight,
Fig.[56) and whitespace objects (of tyjiei tespaceFlyweight)

that are shared is stored in a hashmap of the ®lasstableFly-
weightFactory. To reuse the character objects, the omitted prop-

erty of capitalization has to be defined as parameter for the object. Advantages The advantages of the OOP and AOP implementa-

Advantages The resource consumption of multiple character ob-  tions hold for the FOP implemenation.
jects can be reduced by reusing one shared state variable. Disadvantages In solution A the empty interfacBlyweight in-
Disadvantages Flyweights may introduce performance penalties troduced by the feature modulYWEIGHTPROTOCOL de-
due to hashmap evaluation and parameter evaluation. mands for type casts, that are error prone.

AOP solution. The AOP implementation is similar to the OOP

implementation but manages the flyweight pool, i.e., the hashmap,4.11.3 Discussion
inside the aspectBlyweightProtocol and FlyweightImple-
mentation. The AOP implementation attend the difference be-
tween the usage oflyweight objects that are stored in the
hashmap and dfrintableFlyweight objects that are returned

to a client The flyweight objects are assigned to the interface by the
aspect. The character using methedn uses flyweight objects by
manipulating theFlyweight Implementation aspect which acts

Cohesion. In the OOP implementation the creationkfinta-
bleFlyweight objects is merged in one class. In the AOP imple-
mentation the creation dfrintableFlyweight Objects is scat-
tered across the aspects. The FOP implementation merges the code
creatingPrintableFlyweight objects in the feature modutey-
WEIGHTPROTOCOL

as asingleton. Variability. In the OOP implementation the classes to be used as
Advantages The advantages of the OOP implementation hold for flyweights are restricted to those that are subtype of the interface
the AOP implementation. PrintableFlyweight. In the AOP and FOP implementations ev-

ery class can be used to create flyweight objects since the sub-
type declaration regarding a uniform interfatgrweight is intro-
duced subsequently (usirigclare parents Statements in AOP
and mixins in FOP).

Disadvantages The empty interface introduced by the aspect en-
forces the implementation of type casts.
The implementation may introduce performance penalties due
to hashmap and parameter evaluation.

FOP solution. We present two FOP solutions: solution A, that 4114 Summary
is depicted in Figure 56, is close to the AOP implementation. The A summary is given in Table 11.
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Figure 56. FOP implementation of the Flyweight pattern.

412 Thelnterpreter Design Pattern
4.12.1 Intention

Given a language, define a representation for its grammar
along with an interpreter that uses the representation to
interpret sentences in the language [13].

class (e.g.AndExpression.evaluate) causes code replica-
tion for the ITD of the other classes (e.OrExpression.eval-
uate).

The implementation does not work without the aspect.

FOP solution. Our FOP implementation is close to the AOP
implementation (Fid. 60). The recursive methods, egaluate,

of the BooleanExpression subclasses are transfered into mixin
classes which are merged in the feature moduteERPRETER

4.12.2 Implementation

OOP solution. The pattern is applied to evaluate boolean ex-
pressions (BE). Each operator of the language, AND, OR
and NOT, is implemented by a class, e.gAndExpression,
OrExpression, andNotExpression, see Figure 58. These oper- ) o
ator classes are used to compose expressions of boolean variableRisadvantages The mixin of one method, e.ginterpreter. -
and constants. The composed BE are evaluated by assigning differ- ~AndExpression.evaluate, can notvary with respect to other
ent values to the boolean variables. The boolean constants "true” ~ MiXins, €.g.,interpreter.OrExpression.evaluate. The
or "false” are coded in the cla®oleanConstant; the boolean feature modul®ASE does not work without the feature module
variables are implemented by the cldssriableExpression. INTERPRETER

The classes of the boolean operators, éadExpression, and
the boolean constant and variable clas8e®leanConstant and
VariableExpression) can vary with respect to the common in- Cohesion. To evaluate the cohesion of the different implementa-
terfaceBooleanExpression. Consequently, a boolean operator tions, we have to consider two issues:

can compose boolean constants, variables or nested boolean ex-
pressions including further operators, i.e., nested and complex BE
can be composed. The assignement of values to the boolean vari-
ables is done using the singleton claasiableContext and its
hasmap field respectively.

Advantages The advantages of the OOP and AOP implementation
hold for the FOP implementation.

4.12.3 Discussion

e OOP scatters the implementation of recursive methods to be
applied on the BE, e.g., the evaluation of boolean expressions
(evaluate), across different classes, e.@ndExpression,
and couples the code within these classes to the BE specific
code. The AOP implementation merges the recursive methods
of the BE of different classes into the aspBebleanInter-
pretation but does not separate the variant modules from the
modules that are not variant. In the FOP implementation the re-
cursive methods are separated from the code specific to each op-
eration into mixin classes, e.dnpterpreter.AndExpression,
and all mixin classes are merged in the feature moauieR-
PRETER

Advantages The language of boolean expressions is easy to ex-
tend, e.g., a new operat®¥ORcould be implemented in a sub-
class of theBooleanExpression interface.

Disadvantages Recursive methods, e.g@valuate, to perform on
BE are scattered across the interfeeeleanExpression and
all subclasses, e.gAndExpression. Classes that should be
used to build and analyze boolean expressions fgExpres- ) . )
sion, are restricted to those providing the methedsluate, * The OOP implementation merges the methods associated to
replace, and copy and that are subtype of the interface one boolean operator, boolean variable and boolean constant

BooleanExpression. respectively in classes. The AOP implementation scatters the
recursive methods regarding one boolean operator, &ND,
AOP solution. In the AOP implementation recursive methods to across the respective classes, eAgdExpression, and the

be applied on the BE, e.gevaluate, are merged in the aspect
BooleanInterpretation. The aspect distributes the methods to
the BE-classes using ITD.

Advantages The advantages of the OOP implementation hold for

aspectBooleanImplementation. The FOP implementation

as the AOP implementation scatters the code implementing one
boolean operator, e.gAND, across the respective class, e.g.,
AndExpression, and the feature modul® TERPRETER

the AOP implementation. Variability. We have to consider two issues:

Disadvantages The different ITD of the BE methods, e.gval-
uate, are tangled within the aspect, i.e., altering the ITD of one

¢ |In the OOP implementation of recursive methods, kkel-
uate, can vary with respect to the operator classesy#id a-



<<interface>> VariableContext HashMaE
BooleanExpression lookup()
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1> copy0) ﬁ

AndExpression OrExpression | | NotExpression | [BooleanConstant | | €vauate0
evaluate() evaluate() evaluate() evaluate() getName()
replace() replace() replace() replace() replace()
copy() copy() copy() copy() copy()

Figure 58. OOP implementation of the Interpreter pattern.

<<aspect>>
Booleanlnterpretation
[AndExpression,BooleanConstant,OrExpression,VariableExpression,NotExpression].replace()
[AndExpression,BooleanConstant,OrExpression,VariableExpression,NotExpression].copy()

<<interface>>

<> HashMap

lookup()

SRR — [>| evaluate( assign)
replace()
”,4>7¢09y() ST

ariableExpression

A - ‘ R evaluate()
evaluate() evaluate() evaluate() evaluate() getName()

Figure59. AOP implementation of the Interpreter pattern.

4124 Summary

N
<<interface>> : E
BooleanExpression 7\/&&%&C0ntext HashMay
evaluate() assign()
base replace) | oo ooooooToL
copy0 S |
: <> : : |VariableExpression |
AndExpression OrExpression | | NotExpression| |BooleanConstant || €valuate)
evaluate() evaluate() evaluate() evaluate() getName()
=/
a
. | AndExpression | NotExpression || BooleanConstant |[VariableExpression |
interpreter | replace() replace() replace() replace() replace()
copy() copy() copy() copy() copy() )
Figure 60. FOP implementation of the Interpreter pattern.
bleExpression class, and th@ooleanConstant class. In Criteria OOP | AOP | FOP
the AOP and FOP implementation the recursive methods, Cohesion 0 0 +
i.e., the ITD and mixin associated to these methods, like Variability 0 0 0
evaluate, can be exchanged by exchanging the applied aspect -
(BooleanInterpretation)and feature module\TERPRETER Table 12. Evaluation of the pattern Interpreter

respectively.

In the OOP implementation the implementations of recursive
methods, e.gevaluate, can vary for each class. In the AOP .
and FOP implementation, the method specific ITD and mixins 4.13.1 Intention

are tangled within the aspeBboleanInterpretation and Provide a way to access the elements of an aggregate object

the feature moduleNTERPRETERTrespectively and thus they sequentially without exposing its underlying representation
can not be exchanged. [13].

413 Thelterator Design Pattern

4.13.2 Implementation

In summary the implementations are equivalent regarding the vari- OOpP solution. Hannemann et al. applied the pattern to traverse
ability. a list in different ways, e.g., forward or reverse traversation. The

traversation strategies, e.g., reverse traversation through the list,
are aniterator class, e.g.ReverseIterator. That is, the iterator
traverses elements OpenList list objects.

Advantages Different traversation strategies for a list object, e.g.,
forward and backward traversation, can be exchanged without

A summary is given in Table 12. affecting the list classes.



<<interface>>
Reverselterator SimpleList
list:SimpleList count()
hasNext() append()
remove() remove()
next() get()
A
: : OpenList
w <> count()p
append()
remove()
get()
createReverselterator()

Figure 61. OOP implementation of the Iterator pattern.

<<aspect>> <<interface>>
OpenlListlteration SimpleList
OpenlList.createReverselterator() count()
createlteratorFor() append()
@ remove()
Reverselterator K >—————— 9€t0
list:SimpleList A
hasNext() OpenlList
remove() count()
next() append()
remove()
<> get()

Figure 62. AOP implementation of the Iterator pattern.

Disadvantages The ReverseIterator object only can invoke
public members of the claGpenList to taverse th@penList
objects; if this interface is restricted the possibilities for the
iterator are restricted.

TheOpenList class is closely coupled to tlkeverseItera-
tor class due to the return type of the meth@gknList. -
createReverselterator.

AOP solution. In the AOP implementation the method of the
OpenList class that creates iterator objects, iOpenList.cre-
ateReverselterator, is transfered into the aspe@penList-
Iteration (Figl62). Furthermore, the iterator claseferse-
Iterator) is encapsulated inside this aspect.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
TheOpenList class is decoupled from its iterator cl@esrerse-
Iterator because the methockreateReverselterator is
separated from the list class.

Disadvantages There are no obvious disadvantages of the AOP
implementation we observed.

FOP solution. Our FOP implementation is close to the AOP

<<interface>>
SimpleList
count()
append()
remove()
base get)
ST Ra— LinkedList
append()
remove()
get()
Openl ist IteratorFactory
createReverselterator createlteratorFor()
iterator %(;;/Neg;s(-)lterator
remove()
next()

Figure 63. FOP implementation of the Iterator pattern.

Criteria OOP | AOP | FOP
Cohesion - 0 +
Variability 0 + +

Table 13. Evaluation of the pattern Iterator

Advantages The advantages of the OOP and FOP implementa-
tions hold for the FOP implementation too.

Disadvantages The FOP implementation of the pattern depicts no
obvious disadvantages.

4.13.3 Discussion

Cohesion. In the OOP implementation thepenlist class is
closely coupled to the variaBeverseIterator class due to the
return type of theereateReverseIterator method.

In the AOP implementation theépenList class is not coupled to
theReverselIterator class because thereateReverseltera-

tor method is introduced subsequently. But the AOP implementa-
tion does not separate variant aspects from essential classes.

In the FOP implementation thgpenList class is not coupled to
theReverseIterator class because the methatkateReverse-
Iterator is introduced subsequently. The variant mixin classes
of the feature modul€TERATOR, e.9.,iterator.0OpenList, are
separated from the essential classes (feature meAdE).

Variability. Inthe OOP implementation classes of iterator objects
that can be created by tfipenList objects are restricted to be
subtype of theReverseIterator class due to the return-type
of the methodcreateReverselterator. In the AOP and FOP
implementations iterator objects of different types can be created
by theOpenList objects.

4134 Summary
A summary is given in Table 13.

implementation, i.e., the method that creates the iterator objects4.14 The Mediator Design Pattern

for anOpenList oObject createReverselterator) is transfered
into the mixin clas®penList of the feature modul&TERATOR.
The methodtreateReverselteratorFor provides an alternative
way to create iterator objects for a list object.

4.14.1 Intention

Define an object that encapsulate how a set of objects inter-
act. Mediators promotes loose coupling by keeping objects



<<interface>> <<interface>> <<aspect>> h
GUICollegue GUIMediator MediatorProtocol ‘—ngas maj
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Button Label notifyMediator() Mediator| | Collegue
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Figure 64. OOP implementation of the Mediator pattern. after(Button clicked):notifyMediator()| |-ACtionListener
declare parents actionPerformed()

Figure 66. AOP implementation of the Mediator pattern.

<interfaces> Button Ac_tionListener
GUICZIIegl;J)e<}_ mediator:GUIMediator actionperformed(
setMediator - <<i >> . .
iﬁé"k’fg(')ator() e~ GUIM e or Advantages The advantages of the OOP implementation hold for
jﬁ colleagueChanged() this AOP implementation. Classes to act as colleague, e.g.,
Label 4 Button, do not have to be subtype of a specific interface
tText -
setText() |~ ConcreteMediator Colleague but are extended subsequently to do so.

If the Button class should not invoke the mediator object this
can be achieved by omitting the mediator aspect.

Disadvantages The update code is restricted for updatirgpel

colleague:Label
colleagueChanged()

Figure 65. Mediator pattern by Gamma et al.

object only.
from referring to each other explicitly, and it lets you vary . L .
P, A FOP solution. The FOP solution is close to the AOP implemen-
their interaction independently [13]. tation (Fig! 67).
4142 Implementation Colleague objects are associatedtaton objects in a hashmap
) ) . ) of the singleton clasBediatorProtocol. The notification of col-
OOP solution. In the OOP implementation a mediator class

' ; 1a ! leagues is applied by extending thgActionListener.action-
(Label, Fig.[64) is used by event originator objects (of type performed method. (FOP prevents the extension of anonymous

Button) to u_pdate associated col_leagye c_)bjects, e.g., of type classes thus we embodied tetionListener class in the
Label. That is, after theButton object is clicked, the method  yyactionListener class.)

colleagueChanged of the mediator objectabel is invoked

which updates the colleage object (i.e., it updates itself in this Adyantages The FOP implementation overtakes the advantages of
implementation of Hannemann et(at.) the OOP and FOP implementations.

Advantages The colleague classes, e.§utton or Label, can
vary with respect to th&UIColleage interface because the
communication is implemented in the mediator classel.
That is, the colleague classes are decoupled and thus the
Button object is not aware of the type of colleague it is up- 4.14.3 Discussion

dating. For that no other colleague, elabel, class has 10 conhesion.  Two aspects have to be considered for the evaluation

change. _ ) o _ of cohesion:
The way objects interact is explicitely kept in the concrete me-

diator classes.

Disadvantages The disadvantages of the AOP implementation
hold for the FOP implementation.

¢ In Hannemanns implementation of the Mediator pattern the
communication code in the mediator classbel is closely
coupled to the colleague code of the claadel. In the AOP
and FOP implementations variant communication code, e.g.,

In the implementation presented by Hannemann et al. the medi- ~ RotifyMediator, i.e, colleagueChanged, is separated from

ator code is tangled with the code of the colleague dlasel the communicating classes, e Button andLabel.

thus preventing variation of the mediator and colleague. ¢ In the OOP implementation the code for invoking the colleague

TheButton objects of clasButton depend on 8UIMediator is scattered across all classes. In the AOP implementation the

interface an object due to the member field that is declared and  objects code for notifying colleagues is scattered across the as-

used in theButton class. pects. In the FOP implementation the code of notifying col-
leagues is merged into the feature moduEDIATOR.

Disadvantages The mediator class itself gets complex and mono-
lithic because the it merges the communication code between
different types of objects.

AOP solution. In the AOP implementation the update of col-
leage objects, e.g., of typkabel, is merged into the aspect
method MediatorProtocol.notifyMediator, see Figuré 66.
This method is invoked by advice after the button has been clicked.
This method notifies the colleagues associated in a hashmap of th
aspectMediatorProtocol.

Variability. In the OOP implementation the cla8stton de-
pends on the class@¥IMediator andLabel due fields and meth-

In the AOP and FOP implementations tBetton class does not
&epend on theUIMediator andLabel classes because the medi-
ator invocation is introduced subsequently.

11The implementation presented by Hannemann et al. differs fioen t
approach of Gamma et al. [13]. The approach of Gamma et al. istddpic
in Figurd 65.

4144 Summary
A summary is given in Table 14.
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Figure 67. FOP implementation of the Mediator pattern.
Criteria OOP | AOP | FOP Counter (ol Main
Cohesion - 0 + increment() main()
Variability 0 + + show()
Table 14. Evaluation of the pattern Mediator createMemento()
setMemento()
415 TheMemento Desgn Pattern CounterMemento 4 stores
4151 Intention getState()
Without violating encapsulation, capture and externalize an setState()

object’s internal state so that the object can be restored to

this state later| [13]. Figure 68. OOP implementation of the Memento pattern.

4.15.2 Implementation

<<aspect>> <<interface>>
OOP solution.  The design pattern Memento is applied to store _ MementoProtocol Memento
the field-values of @ounter object, see Figure 68. Ti@unter ajréelrrf]ag‘i; i createMementoFor() setState()
object creates an object of ty@@unterMemento that contains setMemento() getState()
the current values of the fields of the respectisenter object JA <<anonymous>
(in the methoctreateMementoFor). The safed field-values of the | declare Memento
Counter object can be restored by transferring the values back 1 4 parents <Zaspect> setState()
from theCounterMemento object to theCounter object (method | CounterMemento getState()
setMemento). If the field-values of the&ounter object have been Counter createMementoFor() < ,
changed in between, e.g., by the metiadrement, the fields are increment() setMemento() nvokes | Main
overriden by the values stored in theunterMemento object by show() declare parents main()

transfering the member values back to teenter object. Figure 69. AOP implementation of the Memento pattern.

Advantages The Counter object manipulates its corresponding
CounterMemento object on its own and thus the manipulating
main method is not aware of, i.e., are loosly coupled to differenty| pubiic void setMemento(Originator o, Memento m) {
memento types and the internal representation of the object ] if (o instanceof Counter) {
store. 3 Integer integer = (Integer) m.getState();
4 ((Counter)o).currentValue = integer.intValue();
Disadvantages The interface of th€ounterMemento object that 5| } else {
is present to th€ounter class is also available for any other 6| _throw new MementoException("Invalid originator");
object. Hence, the state can be manipulated from other classé }}
and thus the encapsulation of the internal state (field-values
is broken (using C++ the&riend statement can solve that
problem). Figure 70. Resetting the field-values of a class to saved values in
the aspectounterMemento.

AOP solution. The aspecCounterMemento is used to extract
(method createMementoFor) the counters state and to restore

(methodsetMemento) the counters state. to store due to type casts. Thus the aspect is not reusable with

other classes.
Advantages The field-values of an object can be saved by loosely

coupled objects that do not know internals of the class to store. FOP solution. The creation and resetting Mémento objects is

Disadvantages The aspectounterMemento is closely coupled to done by the singleton clas®unterMemento, i.e., the methods
the Counter class because it determines the type of the object createMementoFor andsetMemento (Fig.[71). To enhance ex-
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Figure 71. FOP implementation of the Memento pattern.

Criteria OOP | AOP | FOP
Cohesion - 0 +
Variability 0 + +

Table 15. Evaluation of the pattern Memento

tensibility we extract the anonymous clagsnento into the top-
level clas@iyMemento.

Advantages The advantages of the AOP implementation hold for
the FOP implementation.

Disadvantages The disadvantges of the AOP implementation hold
for the FOP implementation.

4.15.3 Discussion

Cohesion. In the OOP implementation the variant methods stor-
ing the field-values o€ounter objects into the memento objects
are tangled within th€ounter class.

In the AOP implementation the variant methods of storing the field-
values of objects (e.gcreateMementoFor) are separated from the
code that is essential, e.ggunter. increment, but methods that
store and reset objects, e.g., of typminter, are scattered across
the aspectdlementoProtocol, CounterMemento and the inter-
faceMemento.

In the FOP implementation the variant methods that store and re-

set field-values of objects are separated from the essential code of

stored objects (e.gCounter.increment) and the variant code is
merged into one feature ModWEMENTO.

Variability. Inthe OOP implementation tt®unter class is tan-
gled to theCounterMemento class due tereateMemento method
thus theCounter class depends on the claGsunterMemento,
i.e., the modules can not be composed in a flexible way.

In the AOP and FOP implementations theunter class does not
depend on the corresponding memento claieadnto) because
the memento object that stores the field-values@fimter object
is created by the aspettunterMemento (AOP) and the singleton
classCounterMemento (FOP) respectively.

4154 Summary

The aspecMementoProtocol only defines an empty interface
(Originator). The only mechanism that is not OOP is one
declare parents statement in th€ounterMemento aspect and
aspect methods to be defined by the subaspects.

<<interface>> <<interface>>
ChangeObserver | | ChangeSubject
refresh() addObserver()
removeObserver()
1 notifyObservers()
.
- 1
Screen Paint
_observers:HashSet || _observers:HashSet
display() getX()
addObserver() setX()
removeObserver() getY()
notifyObservers() setY()
refresh() getColor()
> setColor()
— addObserver()
removeObserver()
notifyObservers()

Figure 72. OOP implementation of the Observer pattern.

416 The Observer Design Pattern
4.16.1

Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are noti-
fied and updated automatically [13].

Intention

4.16.2 Implementation

OOP solution. The pattern is used to updaSzreen objects

(the observers) after the position or the color dfaint object

(the subject) has been changed (e.g., metheds, setColor;
Fig.[72). The method that changes the state of the subject object
(of typePoint), e.9.,setColor, additionally invokes the method
notifyObservers. The methodScreen.refresh extracts the
observers of a subject object from a hashset and invokes the
methodrefresh of the oberving objects. Thisefresh method,
e.g.,Screen.refresh, updates the observer object (e.g., of type
Screen).

The observed objects, e.g., of typeint, of anChangeObserver
object can be exchanged with respect tothengeSubject inter-

face. The observing objects, e.g., of typereen, of an observed
object can be exchanged with respect tothengeObserver in-
terface.

Advantages Different ChangeObserver objects, e.g., of type
Screen, can be updated without changing the subject class,
e.g.,Point and thus the class is decoupled from the type and
the number of observers to update.

Disadvantages If every observer object (e.g., of tyfreen) is
invoked every time the subject object changes (e.g., of type
Point) the performance decreases due to the notification over-
head.

Observers, e.gScreen objects, can not be updated specific to
their types, since that concrete type is not known to the subject
class.

If the set of events of a subject object that are triggered to
the observer objects should change code replication or invasive
changes are necessary.

If the subject objects shall not update observer objects either
code replication or invasive changes are necessary.

AOP solution. In the AOP implementation code of notifying
observer objects is merged into the asp@gterverProtocol
(Fig.[73). The inheriting aspect®lorObserver, Coordinate-
Observer, andScreenObserver define the join points when to



<<aspect>> . ( o
ObserverProtocol Q—“ HashMap 1 P&'m Point
getObservers() 9etX) getX()
addObservers() p—— setX() setX()
removeObservers() . Subject [ 777980 base gety()
pc:subjectChange 1| [setY0 setY()
after:subjectChange ! | |getColor() getColor()
updateObserver() N ! setColor() L setColor() )

Observer Lo c 2
. Screen <<interface>>
<<aspect>> display() atabd Subject [KF===--~-------1 -

ColorObserver declare parents } | |

pc:subjectChange() ! |

updateObserver() declare parents : 6<6ns z :\;:; nOtifsyiz)reeﬂ :

<<aspect>> Point notify() _ I
ScreenObserver| declare parents p ob _observers:LinkedList !
pc:subjectChange() server addObservers() L~ . - [

updateObserver) | geciare parents ) removeObservers() 3

<<aspect>> notifyObservers() I
CoordinateObserver | declare parents p |
pe:subjectChange() S !
updateObserver() declare parents :

Figure 73. AOP implementation of the Observer pattern [Coor dinateObserver _Setxo Point —nmig(c)reen !
E [ notiy0 || |
|
|
. |
update observer objects by PCA. —<inerfacess Screen Ht-
ice i ScreenObserver ScreenObserverK}H addobserver()
The woven advice invokes the aspect method that updates the ob e temeons | removeObserver(
servers {pdatelbserver). T_his meth_od uses a hashmap to re- notifyObservers()
trieve the observers per subject and invoke thgitate method. notifyScreen()
The aspect methoakldObserver is used to assign subject objects &

to observer objects. Figure 75. Alternative FOP implementation of the Observer pat-

Advantages Changes to the code that updates observer objects tern-
(e.g.,notify0Observers) do not demand for code replication
of the observed classes, eRp;int.

Disadvantages Introducing another observer type either causes Criteria OOP | AOP | FOP
code replication or invasive changes becausapdeteObser- Cohesion » 0 ¥
ver methods rely that the observer typeSisreen. Variability 0 i ¥

FOP solution. We present 2 FOP approaches for that pattern: Table 16. Evaluation of the pattern Observer

soluation A (Fig/ 74) is close to the AOP implementation. The
methods that shall update observer objects, Pognt . setColor,

are extended subsequently in the feature mod@eERVERtO in- . .
voke theupdateObserver method of the singleton classes, e.g., 4163 Discussion

ColorObserver. These methods of the singleton classes per- Cohesion. In the OOP implementation the code that updates
form the updates on the observer objects that are retrieved usingobserver objects is scattered across the claBsgst, Screen,

a hashmap fieldbservers of the singleton classes. Each single- ChangeObserver, andChangeSubject and tangled with the code

ton class updates observer objects specific to an observed issuf the original concern of the respective classes.

(e.g., the clasSolorObserver updates observers when the color In the AOP implementation the variant code of updating observer

of the subject changes). objects is detached into the aspects but scattered across the aspects
Solution B (Fig/ 74) can be applied if all observers oP@int ObserverProtocol, ColorObserver, CoordinateObserver,

object shall be notified after a change to the subject object (of type andScreenObserver.

Point) appeared although the specific observer may not be inter- In the FOP implementation the variant code of updating observer
ested in one specific notification issue. Therefore, the notification objects, e.g., of typScreen, is detached and merged into the fea-
has to be evaluated inside thetify method of each observer, ture module ®SERVER

€.g.,Screen.notify.

Advantages The Advantages of the AOP implementation hold for Variability. I_n the OOP implementation the classes depend on
each other, i.e., the class8sreen and Point depend on the

the FOP implementation. : - o
Solution B improves performance because no hashmap has toChangeQbserver and ChangeSubject interfaces, thus building

- . a monolithic system.
ggjgé/taluated to get the list observers for an observeiht In the AOP and FOP implementations the update of observing

) _ o objects can be omitted. Hence, theint and Screen class do
Disadvantages Solution A may cause code replication for the not depend on interfaces, libject or Observer, but can be
method extensions of the observed class that invokegtet e- omitted and exchanged.
Observer method. The extension by observer types demand for
updating thexpdateObserver methods, since they rely on the
typeScreen to be the observer type due to type casts. 4164 Summary

A summary is given in Table 16.
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Point [ Screen |
getX() display()
setX()
base getY()
setY()
getColor()
setColor()
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<<interface>> ObserverProtocol
CTTTT T Subject I |getObservers() < _
I
ObserverProtocol | | <<lmerface>> I addObservers()
L 3 :{> Observer | | |removeObservers()
1 I
Observer ~ — : A
Pomt ! |- Screen | | ColorObserver
ColorObserver [setColor() |1 1 —— | getinstance()
i ) | updateObserver()
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|_Point | ;W | CoordinateObserver
CoordinateObserver [setX() | | w getinstance()
l i updateObserver()
N |
e T
'[Screen |- - -~ | ScreenObserver
ScreenObserver display() getinstance()
updateObserver()

Figure 74. FOP implementation

417 ThePrototype Design Pattern
4.17.1 Intention

Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype
[13].

4.17.2 Implementation

of the Observer pattern.

<<interface>>
Cloneable
clone()

StringPrototypeA || StringPrototypeB
setText() setText()

toString() toString()

clone() clone()

OOP solution. The prototype design pattern has been applied to
replicate objects of abstract implementation classes Siteing-
PrototypeA and StringPrototypeB, without knowing the in-
ternal representations of the respective classes. For that, the both
classes have to implement the interff@@nable and thus pro-

vide a method to copy its field-values to another object of the same
class.

Advantages The code performing the replication of objects can
vary for each variant class. Different objects can be replicated
using the common interfac® oneable, i.e., clients, that repli-
cate different objects do not have to know about the internal
representations of the replicated objects.

Disadvantages The cloning of objects can hamper performance

Figure 76. OOP implementation of the Prototype pattern.

<<aspect>>

PrototypeProtocol StringProtoypes
Prototyp_e.clone() createCloneFor()
cloneObject() declare parents
createCloneFor() declare g

parents g
StringPrototypeB v 3
setText) ~  f----------- wC g
toString() L éfgﬁeggcﬁfé <intertace>>] |

Prototype

StringPrototypeA | £ ¢lone0
setText()
toString()

and resource consumption compared to object creation.

The code that clones objects of different types is scattered
across the classes to clone.

If the classesStringPrototypeA and StringPrototypeB
should not be able to replicate itself, i.e., should not implement
the interfaceClonable, the classes have to be changed inva-
sively or replicated.

AOP solution. The AOP implementation merges the code for

Figure 77. AOP implementation of the Prototype pattern.

The code of replicating objects can be manipulated subse-
quently by replacing the aspects — that does not replicate the
classesgtringPrototypeA andStringPrototypeB) of the
objects to copy. Clients, that replicate different objects do not
have to know about the internal representations of the objects
to replicate.

cloning different classes into the asperistotypeProtocol and Disadvantages The code replicating the claSsringPrototypeA

StringPrototypes. That metho®rototypeProtocol.clone-
Object replicates its parameter object or invokes the method
createCloneFor of the aspec8tringPrototypes, which repli-
cates the object.

is tangled with the code of replicating the cl&ss ingProto-
typeB thus decreasing variability.

FOP solution. The FOP implementation is close to the AOP im-
Advantages The advantages of the OOP implementation hold for plementation, see Figure 78. We merged the code replicating differ-
the AOP implementation. ent objects into the meth@rototypeProtocol.clonelbject.



Criteria OOP | AOP | FOP
Cohesion 0 0 +
Variability + 0 0

Table 17. Evaluation of the pattern Prototype

The methods:reateCloneFor andcloneObject replicate their
parameter objects.

<<interface>>

OutputSubject

safeRequest()
regularRequest()
unsafeRequest()

shields AANA o shields
,,,,,,,,, oL
| | |
RequestBlocker Outputimplementation RequestCounter

realSubject:OutputSubject safeRequest() realSubject:OutputSubject
safeRequest() regularRequest() safeRequest()
regularRequest() unsafeRequest() regularRequest()
unsafeRequest() unsafeRequest()

Advantages The advantages of the AOP implementation hold for
the FOP implementation.

Disadvantages The code cloning different types of objects is tan-
gled within the method®rototypeProtocol.clonelbject
thus the code performing the replication of objects of differentl
types can not vary for each type without code replication.

Figure 79. OOP implementation of the Proxy design pattern.

protected pointcut requests():call (x
OutputImplementation.safeRequest(..));

2| private pointcut requestsByCaller (Object
caller):requests () && this(caller);

3| Object around(Object caller, Subject subject):
requestsByCaller (caller) && target (subject) {
if (! isProxyProtected(caller, subject,
thisJoinPoint) )

return proceed(caller, subject);
return handleProxyProtection(caller,
thisJoinPoint);

4.17.3 Discussion

Cohesion. We have to consider 2 issues:

¢ In the OOP implementation the code that replicates objects &
scattered across the clas$@sneable, StringPrototyped, 5
andStringPrototypeB, and closely coupled to the main con- 6
cerns of these classes.
In the AOP implementation the code of replicating objects of
different types is is scattered across the aspects and the vari-
ant aspects are not separated from the classes that are essen-
tial, e.g.,StringPrototypeA. In the FOP implementation the
single feature moduleBOTOTYPING merges the variant mixin
classes that implement the replication of objects.

subject,

}

Figure 80. Caller analysis in AOP advice.

classOutputImplementation, clients (e.g., thenain class) are

In the OOP implementation the code of the classasingPro- not affectegl if theDutputImplementation object is .replaced by
totypeA andStringPrototypeB is merged in the respective & Proxy object of typ@utputSubject. The Proxy objects refer to
classes. In the AOP implementation the code of these classes ist_he respective shielded object by an object reference that is instan-
scattered across the aspects and coupled within. In the FOP jm-tiated as needed.

plementation the code of the classgsingPrototypeA and
StringPrototypeB is scattered across the feature modules
BASE and FROTOTYPING.

Variability. In the OOP implementation the code replicating an : _ ¢ _ _ ]
object of a specific class (thelone method) can be exchanged runtime. Proxies can hide complexity of accessing an object,
with respect to the code replicating objects of other classes. In  €.d., a remote object.

the AOP and FOP implementations the code replicating one classpjsadvantages For all methods of a shielded object indirections

is tangled to the code replicating another c_Iass inside the_method are introduced by the shielding Proxy objects and thus the per-
PrototypProtocol.cloneObject. Hence, if the code replicat- formance decreases, e.g., indirections are introduced by proxy
ing objects of one class should be exchanged, invasive changes or objects of typeequestBlocker andRequestCounter.

code replication are necessary. Hiding methods, e.gQutputImplementation.safeRequest,
subsequently by introducing a new Proxy class affects the
classes that invoke methods of thetputImplementation
object (e.g., the classmin) because the calling class have to in-
stantiate this new Proxy class instead of the ctagputImp-
lementation.

If the caller of the output implementation object has to be ana-
lyzed by the Proxy objects the calling object has to provide it-
self as a parameter. This parameter is not necessary if no Proxy
object analyzes the caller objects. Thus the caller classes, e.g.,
the classain, are affected, if a Proxy analyzes the caller — that
causes close coupling.

Advantages Costs for instantiating and manipulating the output
implementation object can be delayed until its properties are
accessed. Proxy objects of the clasBReguestBlocker or
RequestCounter can be applied, omitted, and exchanged at

4174 Summary
A summary of the evaluation is depicted in Figure 17.

418 The Proxy Design Pattern
4.18.1

Provide a surrogate or placeholder for another object to
control access to it [13].

Intention

4.18.2 Implementation

OOP solution.  The clients of proxy classes each refer to an ob-

ject of typeOutputImplementation (Fig.[79) to invoke differ- AOP solution.  Proxy shielding and redirection of method invoca-
ent methods. This referenced object and its methods respectivelytions, e.g., for the methdzhtputImplementation.safeRequest,
(e.g., safeRequest) are shielded by the Proxy objects (of the is applied by intercepting respective metteadls using PCA.
typeRequestBlocker andRequestCounter) from access. If the The caller object of a method of th@utputImplementation
Proxy classes are instantiated instead of the dasgutImple- object is gathered through the pointcut expressions (Fig. 80,
mentation, theRequestBlocker andRequestCounter objects Lines 1-2) and is analyzed for its type by the advice of the
intercept and analyze requests to theput Implementation ob- pointcutrequestsByCaller (Line 3—7) by invoking the method
jects. Since the Proxy objects implement the same interface as theisProxyProtected (Line 4). If the analysis in this aspect method
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PrototypeProtocol Prototype
Prototype= e teCloneFor() clone()
Proto Protocol cloneObject() [} [}
typing £ i i
String— StringPrototypes| [ StringPrototypeA | [ StringPrototypeB |
Pratofypes createCloneFor() | L ‘
P getinstance()
N &
' - 0
<<interface>>
Cloneable
clone()
base . .
StringPrototypeA | | StringPrototypeB
setText() setText()
toString() toString()
. )
Figure 78. FOP implementation of the Prototype pattern.
P«As”g‘»t I to theOutputImplementation class.
N
v pc-requrg:t):;()ro =l If the call to one method of theutputImplementation Ob-
- perequestsByCaller() ject (e.g.,sateRequest) is analyzed, the analysis code is in-
ST around:requestByCaller() troduc_ed around this single method. That is, other methods of
suafggequzgt()e atio isProxyProtected() the object (e.g.regularRequest) stay unaffected and can be
regularRequest() handleProxyProtection() accessed directly by theain class. This prevention of indi-
unsafeRequest() - <<Aspect>> AY rections increases performance by omitting empty forwarding
g RegquestBlocking methods.
g pc:requests() . . . .
21 isProxyProtected() | | Disadvantages There are no obvious disadvantages associated to
3 declare parents this pattern implementation.
<<Aspect>> . .
Reques’;eccounting FOP solution. FOP does not allow to extend method calls in
| ; : | peirequests() . general and thus FOP implementations can not analyze the object
} ﬁﬁiﬂifeer?effé’ﬂg Prementaton } IsProxyProtected( straightforwardly that calls methods of the shiel@edput Imple-
ECBICRAIENS mentation objects, e.g., theain class. To cope with this problem,
<<Aspect>> - P . .
s RequesiDelegation we introduced one mixin and one method extension per shielded

alternateSubject:AlternateOutputimpl
pc:requests()
isProxyProtected()

handleProxyProtection()
declare parents

Figure 81. AOP implementation of the Proxy design pattern.

method (Fig. 82), e.g., for the methodtput Implementation.-
safeRequest we introduced one mixin and one method extension.
The mixin associated to a shielded method, e#feRequest, ex-
tends the signature of this method in the mixin clgssxyProto-
col.OutputImplementation to accept the calling object as an
additional parameter — this extended methoddler-awareand
only forwards calls to the refined callanaware methods of the
feature modulesase. Subsequently, we refine the caller-aware

succeeds the output implementation object is invoked by the aspectMethods to invoke thesProxyProtected methods and thus to

(Line 5). If the methodisProxyProtected fails the call is denied
by invoking the empty methotdlandleProxyProtection (Line
6).

analyze the additional parameter (the caller), e.g., in the feature
moduleREQUESTBLOCKING Hence, thesealler-awaremethods,
that include the additional parameter, are shielded instead of the

Figure 81 depicts the implementation proposed by Hannemann originals.

et al. The output implementation cla8stputImplementation
is manipulated by the clagmin. The aspecProxyProtocol in-

cludes the advice performing the analysis-dependent forwarding to

Advantages The code to analyze callers of methods is merged into
the feature module ®oxyYPROTOCOL

the shielded methods (Fig. 80, Lines 3—7). The analysis of the caller Disadvantages In Java access to caller unaware methods can-

object and the definition of methods to shield (pointeetiuests)

is implemented in the subaspects, eBgquestBlocking.

While the aspectRequestBlocking andRequestCounting are
simply forwarding or denying (by returning a null value) calls to the
shielded methods of theutputImplementation object, the as-
pectRequestDelegation forwards these calls to a different class
(AlternateOutputImplementation) instead.

Advantages The advantages of the OOP implementation, e.g., de-
laying the time of instantiation of tf&atput Implementation
object, hold for the AOP implementation.

not be restricted by additive changl8sC++ allows to de-
crease the accessibility of the caller-unaware methods, e.g.,
base.OutputImplementation.safeRequest.

The classiain) that calls methods of th@utputRepresen-
tation object has to attend the caller analysis by invoking the
methods with the additional parameter, i.e., the caller-aware
methods.

Due to superimposition the namespace of different feature mod-
ules are merged and methods that are specific for one mod-
ule and shall not be overridden have to be renamed. For in-

The application of caller analysis and method shielding can be 20verriding methods in subclasses can not decrease théitysilsiclared

applied without changes to tlrain class and without changes

for them by their respective overridden methods of the slpssc
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stance, we renamed the metiadtput Implementation.is-
ProxyProtected of the feature module RQUESTBLOCKING
intoOutputImplementation.isProxyProtectedBlocking
to prevent overriding, e.g., by the mixitequestCounting.-
OutputImplementation.isProxyProtected.

Changing the number of parameters of methods causes a prob-

lem in extending these methods, equivalently to the constructor

problem, that has been solved for C++/in [11].

4.18.3 Discussion

Cohesion. In the OOP implementation the analysis of method
callers and the forwarding implementation are detached from
the OutputImplementation class but scattered across all proxy

classes, e.gRequestCounter. In the AOP implementation the

caller analysis code is scattered for different methods of the
OutputImplementation class across all aspects. In the FOP im-
plementation the code of the caller analysis of the output imple-

mentation objects is merged in one feature mo@HeOXYPROTG

COL.

Variability. To evaluate the variability of the implementations, we

have to consider two aspects:

¢ Inthe OOP implementation the cla@stput Implementation
depends on the Proxy interfad&aputSubject).
In the AOP implementation the claBgstput Implementation
does not depend on the interfa@etputSubject because the

method shielding is introduced additively and directly into the

class.

FOP also removes dependencies between the theduasst -
Implementation and the interfac@utputSubject.

either code replication or invasive changes ofrthén class be-
cause it has to instantiate the proxy class, @gjuestBlocker,
instead of the clasButputImplementation. The AOP im-

plementation allows to reuse thein class because the caller

Figure 82. FOP design of the Proxy design pattern.

Criteria OOP | AOP | FOP
Cohesion 0 0 +
Variability - + 0

Table 18. Summarized evaluation of the Proxy design pattern.

OutputImplementation.safeRequest to provide an addi-
tional parameter. Hence, thein class is not reusable.

4184 Summary

The OOP implementation introduces different indirections for all
methods of the class when different proxy objects shield an object.
The AOP implementation avoids indirections for methods that are
not shielded because PCA extends single methods of a class. The
FOP implementation introduces one indirection for all potentially
shielded methods of a class.

In the OOP and AOP implementations the analysis of callers
may vary at runtime, e.g., depending on the object (OOP) or de-
pending on the control flow (AOP). In FOP caller analysis is ap-
plied for all instances and calls to the shielded methods.

419 The Singleton Design Pattern

4.19.1 Intention
Ensure a class only has one instance, and provide a global
point of access to it [13].

4.19.2 Implementation

OOP solution. Hannemann et al. applied the Singleton pattern to
limit the number of objects of a printer cla®xrfnterSingleton)

In the OOP implementation flexible caller analysis demands for instantiated at runtime. Therefore, tReinterSingleton class

instantiates a static reference of the own type and refers to this
element subsequently every time the class should be instantiated
—the methodinstance is used to retrieve that single instance.
The subclas®rinterSubclass overrides the methodinstance

analysis is applied without affecting this class invasively. FOP and omits the limitation regarding the count of instances, i.e., the
needs to adapt the objects that invoke shielded methods, e.g. methods returns mewobject every time it is called.



PrinterSingleton
_inst:PrinterSingletor, ~J
instance()
print()

/\

PrinterSubclas

Figure 83. OOP implementation of the Singleton pattern.

<<interface>>|
i <<aspect>> M
SingletonProtocol Singleton
pc:protectionExceptions; :
around:call(Singleton+).new &&!pc:pExceptions(; A | | printer

declare
parents

Z‘ HashTable

Figure 84. AOP implementation of the Singleton pattern.

print()

. <<aspect>>
Singletoninstance
pc:protectionExclusions()

Advantages Multiple instances of the clasgrinterSingleton
can be prevented or the count of instances can be limited.
The clas®rinterSingleton merges synchronization effort.

Disadvantages If the classPrinterSingleton should not act
as a singleton, the clients (thain method) have to call the
constructor of the class instead of calling thetance method
thus clients have to be adapted or th&tance method has to
be manipulated.

AOP solution. In the AOP implementation every call to the con-
structor of the singleton clas®x{inter) is intercepted by PCA
using around advice. If an object of the according cl@gssfter)
exists in a hashmap field of the aspBt¢hgletonProtocol, this

Printer [ PrinterSubclass
base _inst:Printer
print() 5]
getinstance()
Singleton—\ Printer \ [ PrinterSubclass
Instance | getinstance() | | getinstance()

Figure 85. FOP implementation of the Singleton pattern.

Criteria OOP | AOP | FOP
Cohesion - 0 +
Variability 0 + +

Table 19. Evaluation of the pattern Singleton

Disadvantages Since decrease of accessibility of methods and
constructors is not possible in Java subsequently, the limited
view of instances has to be prepared to limit the count of ob-
jects for one class. Hence, we implemented the object creating
methodgetInstance from beginning. C++ allows to reduce
the visibility of class members by subclasses, thus the prepara-
tion of the pattern is not necessary in C++ based approaches of
FOP but changes changes affect the clients.

The application of the pattern to different classes causes code
replication of thegetInstance method and the static refer-
ence.

4.19.3 Discussion

Cohesion. Inthe OOP implementation the code limiting the num-
ber of instances is scattered across the claasasterSingleton
and PrinterSubclass. Furthermore, the essential members of

object is returned by advice instead of a newly created object — the the clas®PrinterSingleton, i.e., the methogrint, are closely
constructor is not called. If there is no object of the class to instanti- coupled with the variant members, i.e., the methadtance.
ate in the hashtable, an object of the respective class is created andhe AOP implementation detaches the code to limit the number

is stored in the hashtable to be used for subsequent requests.

Advantages The advantages of the OOP implementation are kept.
Themain method is not affected whether the cl&asinter
acts as a singleton or not.

Disadvantages The manipulation of one single instance by mul-
tiple clients may demand for additional synchronization code.

The performance decreases due to the evaluation of the hashtab

in the advice to find existing objects of a class.
Due to the empty interfaceingleton several type casts are
necessary that are error prone.

FOP solution. Our FOP implementation is close to the OOP
implementation (Fig. 85). The classsinter andPrinterSub-
class implement a methogetInstance that controls the cre-
ation of instances for these classes.

The methodgetInstance of the mixin classSingletonIns-
tance.Printer proves, whether an object of the clagsinter
exists (and is stored in the static reference offthinter class). If

so, the existing object is returned. Otherwise, an object is create

returned.
ThePrinterSubclass isrefined to create neRrinterSubclass
objects every time the methe@tInstance is called.

Advantages The advantages of the AOP implementation hold
for the FOP implementation but the synchronization effort is
merged into the feature moduleNs&sLETONINSTANCE instead
of aspects.

of instances from the class but scatters the code across the aspects
SingletonProtocol andSingletonInstance.

In the FOP implementation the variant code (the methotance)

is detached from the essential elements of the class and is merged
into the one feature moduleB&GLETONINSTANCE.

Variability. In the OOP approach the claBsinterSingleton

Rnly can be used as singleton. In the AOP and FOP implementa-
tions thePrinter classes can be used as singleton classes and as
normal "multi-object” classes.

4194 Summary

The question concerning this adaptibily is, whether it is meaningful
to apply the limitation regarding the count of instances for one class
obliviously.

FOP does not allow to intercept calls to constructors inside com-
plex methods since the extension of a constructor using refinements
does not prevent the creation of an object.

d4.20 The State Design Pattern
and stored in the static reference. Then this instantiated object is4.20.1

Intention
Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class [13].
4.20.2 Implementation

OOP solution. The pattern is applied to adapt the implemen-
tation of a queue object (of clagmeue; Fig.[86) based on the
number of elements in the queue, e.g., the insertion of additional



<<inter(fgce>; t <<interface>> 1 after (g Q Stat 0biect )
ueueContex ueue queue, QueueState gs, ject arg):
s(gtState() i%:ﬁgeState call (boolean QueueState+.insert(Object)) &&
) target (gs) && args(arg) && this(queue) {
getFirst() 2 if (gs == empty) {
! removeFirst() 3 normal.insert (arg) ;

Queue Z $ 4 queue:setState(normal) H
state:QueueState | = _ __ _ ____ 4/ __________ 5 } else if (gs == normal) {
- ! ! ! 6 if (normal.first == normal.last) {
insert() QueueNormal | | QueueEmpty | QueueFull | 7 full.items = normal.items;
getFirst() insert() insert() insert() 8 full.first = normal.first;
removeFirst() getFirst() getFirst() getFirst() 1?) 3 queue.setState (full);
setState() removeFirst() removeFirst() removeFirst() |11 }

12 }

Figure 86. OOP implementation of the State pattern.

Figure 87. Changing the state of@ueue object by advice.

elements fails if the queue is full. The variant method implemen-
tations of the queue, e.g., of methadsert, are detached into

Q ueue <<interface>>

referred classes, e.@ueueFull. The different classes implement- state:QueueState QueueState
ing methods with respect to the state of theeue (QueueEmpty, insert() insert()
QueueNormal, QueueFull) can be exchanged with respect to the getFirst() getFirst)
interfaceQueueState. removeFirst() removeFirst()
The Queue object forwards requestsifsert, getFirst, or setState() S ‘
removeFirst) to the object representing the current state and is <<aspect>> QueueNormal | | QueueEmpty | | QueueFull
referred to by thequeue object. The state object implements the | =ueteSatespect 'g":l‘i’l‘r(s)to 'g”;‘;’itr(s)to ;Zirltrgt()
methods according to the type of the state class, e.g., state objects |empty:QueueEmpty removeFirst() removeFirst) | | removeFirstg
of type QueueFull reject element insertion. By exchanging the normal:QueueNormal
state object, thQueue object behaves differently for clients. after:Queue.initialisation() QJ

Additionally, the state objects, e.g., of typeateFull, change sy
the state object that thueue object refers to, thus replacing afteiioallfemoveRTisl)

themselve, e.g., by @ueueEmpty object. Figure 88. AOP implementation of the State pattern.

Advantages All behavior associated with an internal state of the

queue, e.g., the queue is full, is merged inside the respective pjsvantages Changes to the ordering of state objects causes

state class, e.giueueFull. the replication of the aspeQueueStateAspect. The aspect
The transition between states (e.g., staieueFull becomes QueueStateAspect is coupled closely to thgueue class, thus

QueueNormal after object deletion) is depicted explicitely by lacks reuse if the state classes are used in different situations.
the changes of the state objects. Modularizing the state transitions lacks the aim of the pat-
The state classes, e.QueueFull can be reused to represent tern to separate behavior of different states [13] because the
the state of other classes. code specific to different states is tangled within the aspect

Disadvantages The code of changing the state df@eue object is QueueStateAspect.
scattered across the state claggesieNormal, QueueEmpty,
andQueueFull. FOP solution. In the FOP implementation the transitions be-

Each state class is CI_oser coupled to the state class that suCyyeen states of agueue object are implemented as extensions of

ceeds after an operation. the Queue methods that may cause a change of state, i.e., methods,

Changing the schedule of state classes that succeeds each othgke queueState.Queue. insert, adapt the state of the current

demands either for invasive changes or code replication. Queue object by exchanging its assigned state object. In contrast
to the OOP and AOP implementation tQeeue class is extended

AOP solution. In the AOP implementation the code exchang- (0 @daptitself but is not adapted by theeuestate classes (e.g.,
ing the state objects of Queue object is merged in the aspect QueueNormal) or the aspectueueStateAspect).
QueueStateAspect. The aspect advises different join points to as-
sign a new state object of a specific type to Qlaeue class.
An example is given Figufe 87. After the methigkert has been
invoked, state of thQueue object is updated (Lines 3—4 and 7-9)
based on the current state. If the queue was empty before insertionDisadvantages The refinementQueueState.Queue is closely
(Line 2) the insertion of an element causes the state to be normal; ~ coupled to thqueue class thus lacks reuse if the state classes
if the queue was filled normally (Line 5)and after the insertion the and their transitions are applied in other situations.
Queue can not store additional elements (Line 6), the state of the Modularizing the state transitions lacks the aim of the pattern to
Queue object is set to be full (Line 9). separate behavior of different states|[13]. The code specific to
different states is tangled within the feature moduleeQES-
Advantages The transition of state objects is separated from the TATE.
state classes and thus the transition definitions can be ex-
changed without code replication or invasive changes. Hence, . .
the integration of a new state class is possible without manipu- +20-3 Discussion
lating existing state classes. Cohesion. We have to consider two aspects to evaluate cohesion
of these pattern implementations:

Advantages The advantages of the AOP implementation hold for
the FOP implementation.



Criteria OOP | AOP | FOP
Cohesion - 0 +
Variability 0 0 0

Table 20. Evaluation of the pattern State

<<interface>>

SortingStrategy|
sort()

N

|
BubbleSort
exchange()

sort()

calls }

Sorter
show()

|
LinearSort
exchange()

sort()

Queue
;tate:QueueState ] OueueState
insert() -
. insert()
getFlrst(). getFirst()
removeFirst() .
removeFirst()
base setState()
I T 1
QueueNormal |QueueEmpty| | QueueFull
insert() insert() insert()
getFirst() getFirst() getFirst()
removeFirst() removeFirst() removeFirst()
l =/
s 0
Queue
Queue-| full:QueueFull
State normal:QueueNormal
empty:QueueEmpty
insert()
removeFirst()
l )

Figure 89. FOP implementation of the State pattern.

¢ In the OOP implementation the transition code is scattered
across all state classes. In the AOP and FOP implementations
the transition code is modularized in the asfizefueStateAs-
pect (AOP) and the feature moduleURUESTATE (FOP) re-
spectively.

In the OOP implementation the code of the variant state tran-
sition is closely coupled to the state classes. In the AOP im-
plementation the variant code of state transition is detached
from the state classes but the module that implements the vari-
ant transitions is not separated from the essential classes of
Queue and QueueState. The FOP implementation separates
the variant transition code from the essential state code into the
mixin classQueueState.Queue and the variant mixin classes
are separated from the essential classes,@égue.

Variability. We have to consider 2 aspects:

¢ In the OOP implementation every state class, @@eneFull,
depends on the succeeding state class, @ugueNormal.

Since this restriction holds for all state classes, no state class can
be exchanged without code representation or invasive changes.

In the AOP and FOP implementations the state classes, e.g.,
QueueFull do not depend on each other and thus can be ex-
changed.

In the OOP implementation the definition of the transition for
every state class (e.g., st@geueFull follows QueueNormal

after element insertion) can be exchanged without corrupting
the code associated to other classes. In the AOP and FOP
implementations the transitions between all states are tan-
gled within the aspecfQueueStateAspect (AOP) and the
QueueState.Queue class (FOP) respectively and thus ex-

changing the definition regarding one state class causes code

replication or invasive changes for the definitions regarding the
other classes.

In summary the OOP, AOP, and FOP implementations are
equivalent regarding the variability in this pattern.

4.20.4 Summary

Modularizing the state transitions as in AOP and FOP lacks the aim
of the pattern to separate behavior of different states [13].

Figure 90. OOP implementation of the Strategy pattern.

4.21 The Strategy Design Pattern
4211

Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it [13].

Intention

4.21.2 Implementation

OOP solution. Hannemann et al. proposed to assign different
algorithms, e.qg., bubble sort or linear sort, to a sorting component
(Sorter, Fig.[90). Hence, the different algorithms are separated
from theSorter class intcstrategyclasses each, e.@ybbleSort
andLinearSort. The strategy classes can vary with respect to the
referredSortingStrategy interface at runtime. Th&orter class
refers to a strategy object and forwards calls ofg¢bet method to

the strategy object, i.e., based on the dynamic type of the referred
strategy object, e.gBubbleSort, different implementations are
executed for the forwarded methagbt) at runtime.

Advantages Variant algorithms, e.g., linear sort, i.e., method im-
plementations, are modularized in classes, &.ihearSort,

and can vary at runtime for a giverter object. Conditional
statements to choose the proper implementation are prevented,
e.g., for methodsort, since the implementations for meth-
ods are exchanged by assigning another strategy object to the
Sorter object.

Disadvantages The strategy objects, e.g., of ty@abbleSort,
only can manipulate members of tiserter class that are
declared apublic.

The forwarding of method calls by tirter class decreases
performance.

The classes that use tBerter object to sort elements assign
the appropriate strategy objects to $erter object. Hence,
the client fiain) is coupled to the different strategies that are
possible for theSorter class.

Classes that should be applied as strategies f@&dheer class
have to implement the comm@ertingStrategy interface.

AOP solution. The classes that implement different strategies,
e.g., BubbleSort, are assigned to thBorter objects using a
hashmap inside the aspeftrategyProtocol. A hook method
sort is introduced into theSorter class. Calls to this hook
method are intercepted by PCA. This PCA redirects the calls of the
methodSorter.sort to the sorting methodBubbleSort . sort

Or LinearSort.sort.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.



<<aspect>> <">1 HashTable
StrategyProtocol — _|_Sorter
setConcreteStrategy() <<interface>> <<injeﬂace>> Bubble exchange()
getConcreteStrategy( Strategy Sorting— Sort sort()
4 AN Strategy
<<aspect>> T : : Sorter
SortingStrategy | | BubbleSort LinearSort Sorter Linear— [exchange()
Sorter.sort() exchange() exchange() Sort sort()
around:Sorter.sort() sort() sort()
declare parents declare parents
» Figure 94. Alternative FOP implementation of the Strategy pat-
Figure 91. AOP implementation of the Strategy pattern. tern.
Criteria OOP | AOP | FOP
int[] around(Sorter s, int[] numbers): call (int[] Cohesion 0 0 ¥
Sorter.sort(int[])) && target(s) && args(numbers) T
t " Variability 0 ¥ ¥
Strategy strategy = getConcreteStrategy(s); .
if (strategy instanceof BubbleSort) { Table 21. Evaluation of the pattern Strategy

((BubbleSort)strategy).sort (numbers);
} else if (strategy instanceof LinearSort) {

3 ;?E;niarsort) strategy) .sort (numbers); Advantages The advantages of the OOP and AOP implementa-
/I Invalid strategy: could throw an exception tions hQ'd for the FQP implementation. i
here In solution B the clients of the sorter objects, e.g., ifagn
} method, are decoupled from the strategies ofSbeter ob-

return numbers; jects since they do not have to assign the different sorting strate-

gies to thesorter objects —i.e., they do not have to know them.
In solution B the performance is improved because no hashmap
Figure 92. Changing the state ofGueue object by advice. has to be evaluated and the methods, eqrt andexchange,
do not have to be bound dynamically. In solution B the strat-
egy methods of the strategy objects, esgxt, can access all
TheSorter class does not depend on thierategy interface, members of theorter class including members declared as
because the variant code of the methadt is detached into private of protected/"
the aspecSortingStrategy. Disadvantages For solution A the disadvantages of the AOP im-
Any class that implements the methseélrt can be used to act plementation hold.
as a sorting strategy for tiserter class, i.e., the class does not
have to be subtype of a commearategy interface.

4.21.3 Discussion
Disadvantages The indirection of the hashmap evaluation to get

the associated strategy object decreases performance. Cohesion. In the OOP implementation different implementations
The clients of theSorter object, e.g., thain method, have  for one method of theorter class are scattered across the classes
to assign the appropriate strategy, eBybbleSort, to each SortingStrategy, BubbleSort, andLinearSort. In the AOP

objects. scattered across the classasbleSort, LinearSort and the as-

pectsStrategyProtocol andSortingStrategy. Inthe FOP im-
plementation the code regarding different strategies foptheer
class is merged in the feature moduleFEERENTSTRATEGIES.

Since the classes that implement the different strategies do not
have to fulfill a common interface, the aspgettingStrategy

has to analyze the types of strategy objects at runtime thus de-
creasing performance, this is depicted in Figure 92 Lines 3 Variability. Inthe OOP implementation the classes to be used as
and 5 to perform the appropriate actions. (Conditional state- strategies for th€orter class are restricted to those that are sub-
ments to select the strategy to invoke were aimed to be omitted type of the interfacSortingStrategy. In the AOP and FOP im-

by Gamma et al/ [13] but occur in Lines 3 and 5 of the Fig- plementations the objects of every class can be assigned to instan-
urel 92.) tiate stragegy objects f@orter objects.

) ) 4214 Summary
FOP solution. We present 2 FOP solutions for that pattern: Our . )
first solution is close to the AOP implementation (Fig] 93). The A summary is given in Table 21.
strategy opject, e.g., of typBubbleSort, is associated to the 422 TheTemplate Method Design Pattern
Sorter object by a key-value pair of the hashmap of the singleton
classStrategyProtocol. The mixin SortingStrategy.Sor- 4.22.1 Intention
ter.sort forwards calls to the methagbrt of the strategy object
which performs the sort.
Solution B is depicted in Figure 94. This implementation is appli-
cable, if the sorting strategy for @brter objects can be assigned
at compile time, i.e., the sorting strategy shall not be exchanged at
runtime. The sorting strategies, e.g., linear sort or bubble sort, are 13| mixin layers are used to implement FOP, the strategy methads, e
chosen by choosing the appropriate feature module, eugBBE- sort, can not access private members of the prior class refinements. J
SORT. packs bypass this restriction.

Define the skeleton of an algorithm in an operation, defer-
ring some steps to subclasses. Template Method lets sub-
classes redefine certain steps of an algorithm without chang-
ing the algorithm’s structure [13].




BubbleSort] | LinearSort| [ Sorter |
base exchange() exchange() —_—
sort() sort()
Different— -<<interface>> -<<imerface>> StrategyProtocol <>_‘ HashTable|
Strategies setConcreteStrategy() —
/\ getConcreteStrategy()
- Lo - : getinstance()
. ] ] Il
Sorting= BubbleSort| [ LinearSort| | Sorter
Strategy' it ' | sort()

Figure 93. FOP implementation of the Strategy pattern.

DecoratedStringGenerator <<aspect>>
generate() Generating
prepare() DecoratedStringGenerator.generate()
filter() <<interface>>
finalize() DecoratedStringGenerator
4 4 prepare()
SimpleGenerator |FancyGenerator fflter-()
prepare() prepare() finalize()
filter() fiter g | N
. . " . | |
finalize() finalize() SimpleGenerator | [FancyGenerator
Figure 95. OOP implementation of the pattern Template Method. prepare() prepare()
filter() filter()

4222 Implementation finalize() finalize()
OOP solution. Hannemann et al. applied the pattern to com- Figure 96. AOP implementation of the pattern Template Method.
pose the complex operatiogenerate) of String transformation

out of atomic operations. The complex operatgrnerate per-

forms different atomic operations which can be exchanged with Disadvantages Hook methods for the atomic operations are still
respect to the interfad®ecoratedStringGenerator. For exam- necessary.

ple, the atomic operatiofiilter may be implemented in a simple

or fancy way. The different variants of the atomic operations, €.g., FOP solution. We present two solutions for the implementation

SimpleGenerator.filter andFancyGenerator.filter, are of that pattern: In solution A the variant complex operation is sep-
defined in sub classesimpleGenerator andFancyGenerator arated from the implementations of the atomic operations in the
of the classDecoratedStringGenerator. By selecting the in- feature modulg EMPLATEMETHOD, see Figuré 97.

stantiated class, i.eFancyGenerator Or SimpleGenerator, Solution B (Fig/ 98) is applicable if the atomic operation, e.g.,

at instantiation time, the variants of the atomic operations (€.g., fi1ter, to compose the complex operatigenerate can be cho-
filter) defined in that class are used as steps for the compoundsen at compile time.

operationgenerate.
. . ) Advantages The advantages of the OOP and AOP implementation
Advantages Changing the atomic operations of an the complex hold for the FOP implementations A and B.
generate operation does not effect the implementation of the Solution B decreases the number of virtual methods in C++
generate method. since the different variants of methods are introduced directly
Disadvantages The variants associated to the complex operation into the class without inheritance. That improves the perfor-
generate have to be anticipated by invoking hook methods of mance and the resource consumption of the software [10].
atomic operations. Solution B does not demand for hook methods.
If the complex operatiogenerate should be replaced the class  Disadvantages For solution A hook methods are still needed to ap-
DecoratedStringGenerator has to be extended or replaced ply different primitive operations, e.gfilter, to the complex
thus causing code replication or invasive changes. operationgenerate.

AOP solution.  In the AOP implementation the variant complex 4223 Discussion

operatio teisintroduced by the aspecé ting usin
I'IPD Seer,g:?éljfé; y hekenerating g Cohesion. All implementations of the Template Method design

pattern are equivalent regarding cohesion. In all classes the com-
Advantages The advantages of the OOP implementation hold for plex operation is decoupled from the concrete implementation of
the AOP implementation. the primitive operations. In all techniques the implementations of
The composed operation can vary without replicating the prim- the different variants of the primitive operations are separated from
itive operations. each other.



é DecoratedStringGenerator A 1| public class BinaryTreeNode implements Visitable {
2| public void accept(BinaryTreeVisitor visitor) {
prepare() 3 visitor.visitNode (this);
filter() 40y
- 5/}
finalize() 6l ..
base ZF‘ le
. 1| public class S tionVisit implements
SimpleGenerator | [FancyGenerator pBinarYTreeVisuimtmoar l{on teivor Imp
prepare() prepare() 2| protected int sum = 0;
f!lter_() f!lter_() 4| public void visitNode(Visitable node) {
finalize() finalize() 5 BinaryTreeNode rnode = (BinaryTreeNode) node;
A =/ 6 rnode.left.accept (this);
- 7 rnode.right.accept(this);
template- | DecoratedStringGenerator 8 }
9
Method generate() 10| public void visitLeaf(Visitable node) {
11 BinaryTreeLeaf leaf = (BinaryTreeLeaf) node;
Figure 97. FOP implementation of the pattern Template Methodg S tT eafigetvatue O
14 ...
15| }
DecoratedStringGenerator Figure 99. Application of an visitor to visited classes.
Fancy- prepare()
Generator| filter0 ,
finalize() 4.23.2 Implementation
OOP solution. Hannemann et al. apply the visitor pattern to per-
- form operations on a tree structure, like summation of tree elements
DecoratedStringGenerator (SummationVisitor) or to display the treelfraversalVisitor).
Simple— | Prepare() For that, the visitor object, e.g., of ty@mmationVisitor, is
Generator filterQ applied to the root node of the tree structure, usingadbeept
finalize() method. Thisaccept method invokes @isitNode or visitLeaf
method of the overgiven visitor object using itself as parameter.
i Before or after processing the root node of the tree the visitor
template— | DecoratedStringGenerator object applies itself to the children of the root node by invoking
Method | 9enerate() their accept method and thus the whole tree structure is traversed

Figure 98. Alternative FOP implementation of the
plate Method.

pattern Tem-

Criteria OOP | AOP | FOP
Cohesion 0 0 0
Variability 0 + +

Table 22. Evaluation of the pattern Template Method

Variability. In the OOP implementation the primitive operations,
e.g., filter, are tangled with the complex operatiganerate

due to inheritance. The AOP and FOP implementations decouple
the primitive operations from the complex methggherate and

thus thegenerate method can be exchanged.

4224 Summary
A summary is given in Table 22.

4.23 The Visitor Design Pattern
4231

Represent an operation to be performed on the elements of
an object structure. Visitor lets you define a new operation
without changing the classes of the elements on which it
operates| [13].

Intention

recursively before or after processing the nodes. This recursion
end when a leaf is processed by the visitotgitLeaf). The
visitLeaf method processes the leaf node and returns. By back-
tracking the result for the root node, i.e., for the whole tree struc-
ture, is calculated, e.g., the sum of the elements. An example listing
is depicted in Figure 99. The listing depicts thecept method of

the classBinaryTreeNode (that objects are no leafs, Lines 1-6).

If a visitor X is applied, its methodisitNode is invoked (Line

3) giving the identity as parameter. ThasitNode of the visi-

tor object (Lines 10-14) processes a tree node, except leafs, i.e.,
it applies itself to the children of the tree node (Lines 12-13).
BinaryTreeLeaf objects invoke therisitLeaf method of the
visitor (Lines 16-19) and are processed directly, e.g., the value is
added to the sum (Line 17).

Advantages The visitor classeSummationVisitor andTraver-
salVisitor each merge the code regarding one operation to
be performed on the tree structure, e.g., summation of all ele-
ments of a tree. Consequently, new operations to be performed
on the tree structure and can be added by adding further visitor
classes.

The visited objects, e.g., of tyfEnaryTreeLeaf Or Binary-
TreeNode, do not have to implement the same interface nor do
they have to be related at all. Hence, the visitor pattern allows
to navigate across different class hierarchies.

The operation that can process unrelated objects of arbitrary
types does not demand for global variables or additional pa-
rameters to keep track about the operation.

Disadvantages If objects of a new class, e.ginotherTreeNode,
are introduced into the tree structure, all visitor classes, e.g.,



<<interface>> BinaryTreeVisitor

Visitable SitNod

accept() visitNode()

A A i > visitLeaf()

! | BinaryTreeNode report0

1| left:Visitable T T

| |_right:Visitable SummationViositor || TraversalVisitor
BinaryTreeLeaf| | accept() visitNode() visitNode()
accept() getLeft() visitLeaf() visitLeaf()
getValue() getRight() report() report()

Figure 100. OOP implementation of the Visitor pattern.

SummationVisitor, have to be extended to process this new
tree node typ@notherTreeNode.

The visitor, e.g.,SummationVisitor, only can access pub-
lic members of the visited classeéiinaryTreeNode and
BinaryTreeLeaf to perform its operation.

The extension by visitors has to be anticipated by implementing
anaccept method in every visitable class.

AOP solution. Hannemann et al. merge the code of associ-
ated to visitors of a tree structure (with two kinds of elements)
into the aspectisitorProtocol. The tree node classes, e.g.,
BinaryTreeLeaf, are assigned to implement the interfatiege
andLeaf. These interfaces implement thecept methods that
allow visitor objects to process the tree node objects. Additionally,
the aspectisitorProtocol assigns the classégmmationVisi-
tor andTraversalVisitor to implement th&/isitor interface

so that they can be applied to thecept methods of the tree ele-
ments.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
The tree classes, e.BinaryTreeNode, do not have to be pre-

pared to be processable for visitor objects, i.e., they do not have

to implement thexccept method from beginning.

Disadvantages Code regarding one class, eBfiparyTreeNode,
is scattered across the clas8egaryTreeNode, Summation-
Visitor, andTraversalVisitor.

The visitor classes, e.glraversalVisitor, only can access

Criteria OOP | AOP | FOP
Cohesion 0 + +
Variability 0 + +

Table 23. Evaluation of the pattern Visitor

Disadvantages Visitors only can access public members of the tree
node classes, e.BinaryTreeNode, to perform their opera-
tion.

4.23.3 Discussion

Cohesion. We haveto consider two issues:

¢ In the OOP, AOP, and FOP implementations the code associ-
ated to a tree node class, e BinaryTreeLeaf, is scattered
across the respective class, eBinaryTreeLeaf, and the vis-
itors SummationVisitor andTraversalVisitor.
In the OOP, AOP and FOP implementations the code re-
garding one operation is merged in the visitor classes, e.g.,
SummationVisitor.

In the OOP implementation the tree node classes,Bigary-
TreeNode, are closely coupled to variant behavior of operations
due to theaccept method.

In the AOP and FOP implementations the tree node classes
are not coupled to the variant behavior of the visitor classes,
because theccept method is introduced subsequently.

Variability. In the OOP implementation the visitor classes, e.g.,
SummationVisitor, are restricted to the classes that are subtype
a common interfac&isitor so that they can be accepted by the
tree nodes. In the AOP and FOP implementations all classes, that
provide thevisitNode andvisitLeaf method can be used as a
visitor due to subsequent extension.

4234 Summary

The primary problem the visitor pattern aims to solve is to extend

classes without changing them — that can be surfed by simple AOP
introductions or FOP refinements respectively.

Since Java prevent multiple inheritance and in that AOP implemen-
tation indeed multiple inheritance is used the transformed feature

public members of the tree node classes to perform their opera-module in FOP has to be split. Furthermore, theitableNode . -

tion.

FOP solution. We present 2 approaches for that pattern: So-
lution A is close to the AOP implementation, see Figure|102.
The tree node class@inaryTreeNode, BinaryTreeLeaf, and
Visitable are extended to inherit the methadcept from the
classed.eaf andNode respectively. That method allows visitors,
like SummationVisitor, to process the tree node classes. Addi-
tionally, the visitor classeSummationVisitor andTraversal-
Visitor are assigned to theisitor interface so that they can be
applied to theaccept method of the tree node classes.

Solution B is a simplification of solution A. Since the distinc-
tion of tree node types, e.BinaryTreeNode, in the visitor is
implemented through distinction of method names indheept
method (see Fig. 99) the classesaf andNode can be omitted
(Fig.[103). Mixin classes that introduce thecept methods in-
herit theVisitableNode interface left. The methods defined in
the classediode andLeaf are transfered into refinements of the
tree node classes.

Advantages The advantages of the OOP and AOP implementation
hold for the FOP implementation.

accept method had to be deleted, which does not matter because
the only class inheriting this implementation overrides this method
anyway.

The authors criticize that classes inherit from internal classes of an
aspect directly.

5. Conclusions

GoF design patterns are well known and used to improve flexibility
and reusability of software that is implemented in OOP. Hanne-
mann et al. observed a lack of modularity in object-oriented design
pattern implementations and thus improved the pattern implemen-
tations using AOP [15]. We followed the line of Hannemann et al.
and reimplemented their design pattern implementations with FOP.
We defined criteri@ohesiorandvariability and used these criteria

to evaluate and compare OOP, AOP, and FOP design pattern imple-
mentations.
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Figure 102. FOP implementation of the Visitor pattern.
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