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Abstract
Design patterns are general solutions for recurring problems and
used to develop flexible, reusable and modular software with
Object-Oriented Programming (OOP). Prior studies have shown
a lack of modularity in object-oriented design patterns.Aspect-
Oriented Programming (AOP)aims at improving flexibility, reusabil-
ity, and modularity in object-oriented designs. In a case study Han-
nemann and Kiczales have argued that AOP improves the imple-
mentation of GoF design patterns.Feature-Oriented Programming
(FOP) is a new programming technique that also aims to improve
the modularity in object-oriented designs. In this paper we com-
pare OOP, AOP, and FOP in a quantiative case study of design
pattern implementations. We evaluate the OOP, AOP, and FOP de-
sign pattern implementations with respect to modularity and show
that FOP performs best compared to OOP and AOP.

1. Introduction
Design patterns are accepted and well known approaches to imple-
ment variable and reusable software usingObject-Oriented Pro-
gramming (OOP)[13]. Although widely accepted, design patterns
lack in separating software into modules and causecrosscutting
concerns[15].
Crosscutting concerns imply tangling, scattering and replication
of source code which results in complex software [16]. Classes
that include code of a crosscutting concern are closely coupled to
this concern (tangling) and to the other classes that also implement
this crosscutting concern. To exchange the crosscutting concern
the classes that include this concern have to be replicated. Thus,
software including crosscutting concerns is monolithic, hard to
maintain and reuse and thus development effort increases. Cross-
cutting concerns are studied in ongoing research [4, 23, 27], and
numerous approaches aim to tackle them on different levels of
software development, e.g., during requirement engineering and
others [1, 25, 8, 20]. Recently, advanced programming techniques,
e.g.,Aspect-Oriented Programming (AOP)and Feature-Oriented
Programming (FOP), gain momentum to overcome crosscutting
concerns [16, 24].
Several studies have shown the strengths of AOP and FOP [15, 14,
2]. These studies concentrated on single techniques or compared
AOP and FOP qualitatively.
In this paper we compare OOP, AOP, and FOP in a quantitative
case study using the Gang-of-Four (GoF) design patterns [13]. We
did so to achieve a broader perspective of problems that occur fre-
quently in software development. We show that FOP outperforms
OOP and AOP with respect to modularity but also includes draw-
backs.
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Figure 1. UML notation of OOP classes and interfaces.

2. Background
2.1 Object-Oriented Design Patterns

In OOP methods and variables are merged intoclasses. For com-
posing classes OOP provides mechanisms of inheritance and object
composition [28]. Variability of software is achieved through poly-
morphism of classes [7].
Object-oriented design patterns propose advantageous class ar-
rangements for frequently recurring requirements [13]. The re-
quirements are described byrolesof interacting objects, e.g., if one
kind of object has to observe changes of another object. If a class
should play a role in one of these design patterns it is assigned to
implement interfaces or to inherit classes specific to its role.

Figure 1 depicts the UML notion for OOP mechanisms [22].
The figure depicts the classesFramedLabel andButton, the ab-
stract classLabel, and the interfaceButtonInterface. The class
Label declares the methodgetText, the classButton defines this
method. Equivalently, the methodclick is declared in the inter-
faceButtonInterface and is defined in the classButton. Inher-
itance and interface implementations are denoted by arrows while
inheritance implies solid arrows and interface implementations im-
ply dashed arrows. Associations between classes are denoted by
simple lines, e.g., the classLabel includes one member of type
ButtonInterface.

2.2 Aspect-Oriented Programming

The purpose of AOP is to modularize crosscutting concerns into
aspects[16].
We now explain the AOP mechanisms of AspectJ1, a popular AOP
language extension for Java, that are used in our case study [15].

Pointcut and Advice. The mechanism of AOP is the extension
of code implementing events that occur at runtime (so-calledjoin
points) [18]. The static representation of a runtime event in the
source code is calledjoin point shadow. Join point shadows are
for example method calls, constructor calls, or member access. A
pointcutdefines a set of join points to be extended. The extension
to be invoked at the join points is calledadvice.

An example for pointcut and advice (PCA) is given in Figure 2.
The aspectMyAspect (Lines 12–26) extends the classesLabel and
Button. The pointcutLabelChangeCall (Line 13) refers to all

1 http://www.eclipse.org/aspectj/



1 p u b l i c c l a s s Label {
2 p u b l i c v o i d setText (){ /∗ . . . ∗ / }
3 }

4 p u b l i c c l a s s Button {
5 ButtonInterface _b;
6 p u b l i c v o i d click (){
7 /∗ . . . ∗ /
8 myLabel.setText("Button clicked")
9 /∗ . . . ∗ /

10 }
11 }

12 p u b l i c a s p e c t MyAspect {
13 p r o t e c t e d p o i n t c u t LabelChangeCall ():

c a l l (* ´ ´ Label .*(..));
14 p r o t e c t e d p o i n t c u t LabelChangeExec ():

e x e c u t i o n (* ´ ´ Label .*(..));
15 b e f o r e ():LabelChangeCall (){/*...*/}
16 b e f o r e ():LabelChangeExec (){/*...*/}
17
18 p u b l i c String Label.Name;
19 p u b l i c v o i d Label.printName (){/*...*/}
20
21 p u b l i c HashMap printer;
22 p u b l i c v o i d getPrinter (){/*...*/}
23
24 d e c l a r e p a r e n t s :Button i m p l e m e n t s ButtonInterface;
25 d e c l a r e p r e c e d e n c e :PriorAspect ,MyAspect;
26 }

Figure 2. Application of call and execution advice in AOP.

statements that invoke methods of the classLabel (call pointcut),
e.g., call statements for the methodsetText. The corresponding
piece of advice (Line 15) is woven into the methodclick of the
classButton before(before advice) the call of the labels method
setText is invoked (Line 8). Advice also can be applied after (af-
ter advice) or around (around advice) join points.
The advice of the pointcutLabelChangeExec (Line 16) refers to
the body of the methodsetText (execution advice), i.e., the ad-
vice is woven into the methodsetText of classLabel (Line 2).
While pieces of call advice, e.g., advice assigned to the point-
cut LabelChangeCall, intercept the method caller, i.e., call ad-
vice only augments specific join points that perform the method
setText, execution advice, e.g., advice assigned to the pointcut
LabelChangeExec, intercepts the called object, i.e., execution ad-
vice augments all join points performing the methodsetText.

Inter Type Declaration. Inter type declarations (ITD) are meth-
ods or variables that are inserted into classes and interfaces by an
aspect and thus become members of these classes and interfaces
respectively. Contrary to Java conventions, AspectJ allows to intro-
duce methods including a method body into interfaces [15].
In our example of Figure 2 the aspectMyAspect defines two ITD
i.e., to insert the member variableName (Line 18) and method
printName (Line 19) into the classLabel.

Aspect Fields and Methods. Aspects can contain members simi-
lar to members of an OOP class, i.e., aspects can contain methods,
fields, or inner classes and interfaces. These aspect members can
be invoked like methods of a class from inside the aspect, e.g., by
advice, or from outside the aspect, i.e., from the classes (using the
aspect methodaspectOf). The aspectMyAspect includes one as-
pect field and one aspect method (Fig. 2, Lines 21–22).
If aspect fields and methods (AFM) are invoked throughaspectOf

and no extra pointcut mechanisms are declared (e.g.,percflow),
then every reference to the aspect members of one aspect refers to
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Figure 3. Graphical notation of an aspect.

the same singleton instance of the aspect. In this case the aspect is
instantiated once.

Parent Declaration. Aspects can make a class to implement an
interface. Furthermore, aspects can declare a class to inherit from
another class.
In Figure 2 (Line 24), the aspectMyAspect assigns the class
Button to implement the interfaceButtonInterface.

Other AOP. The categoryOther AOPincludes compiler warnings
and errors and includes the declaration of advice precedence.
If a user defined constraint is violated by the classes, the aspect
weaver can be instructed to invoke compiler warnings or compiler
errors.
Precedence declarations define the ordering of advice if join point
shadows are advised by more than one aspect, e.g., Fig. 2, Line 25,
states that the advice of the aspectPriorAspect has to be applied
before the advice of the aspectMyAspect is applied.

We depict our extended UML notion for aspects in Figure 3.
The shaded element depicts the aspectMyAspect of Figure 2 and
includes the PCA, ITD, and AFM. Pointcuts are abbreviated using
pc while advice is abbreviated by the type of advice (e.g., before
advice). We depict subclass declarations assigned by an aspect by
associating the aspect to the inheritance relationship of the classes
(associationdeclare parents, Fig. 3).

2.3 Feature-Oriented Programming

FOP aims at feature modularity in software product lines where
features are increments in program functionality, e.g., feature trac-
ing [24, 6]. Typically, features are not implemented through one
single class [26, 5] but through differentcollaboratingclasses and
adding a feature subsequently means to introduce code, e.g., new
methods, into different existing classes [24, 26]. This code of dif-
ferent classes associated to one feature is merged into onefeature
module. In the following selecting features of the software is equiv-
alent to selecting feature modules. Assigning a feature to a config-
uration causes the new feature module to superimpose (refine) the
old feature modules [6], i.e., methods and classes are added or get
refined.
We systematize the mechanisms of the AHEAD Tool Suite2, a pop-
ular FOP language extension for Java, into the categories ofMixins,
Method Extensions, andOther FOP. Additionally, we describe the
OOP technique ofSingletonclasses as a category since we used
singleton classes to transform AFM into FOP.

Method Extension. FOP allows to extend methods of classes by
overriding.
An example is depicted in Figure 4. The feature module BASE
(Lines 1–4) includes a classLabel that is superimposed by the
refinement EXTENSION (Lines 5–12), i.e., the refinement EXTEN-
SION superimposes the methodsetText of the classLabel. The
methodsetText of the feature module EXTENSION extends the

2 http://www.cs.utexas.edu/users/schwartz/ATS.html



1 / / f e a t u r e modu le BASE
2 p u b l i c c l a s s Label {
3 p u b l i c v o i d setText (){ /∗ . . . ∗ / }
4 }

5 / / f e a t u r e modu le EXTENSION
6 r e f i n e s c l a s s Label {
7 p u b l i c v o i d setText (){
8 Super (). setText ();
9 }

10 p u b l i c String Name;
11 p u b l i c v o i d printName (){ /∗ . . . ∗ / }
12 }

Figure 4. Refinement of a method by a FOP refinement.
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Figure 5. Refinements and classes in FOP.

setText method of the feature module BASE by invoking this su-
perimposed method usingSuper (Line 8) and defining additional
statements.

Mixins. Feature modules include mixin classes, that superimpose
and refine other classes. Mixins are members of mixin classes, e.g.,
methods and member variables, that are introduced into an existing
class and extend the set of members of this refined class.
In Figure 4 the new methodprintName and the new memberName
is introduced by the feature module EXTENSION, i.e., by the mixin
classLabel (Lines 10–11).
We define that a subtype declaration of a mixin class is a mixin
too since this property is added to a class. Thus, mixin classes can
introduce additional base classes for a refined class.

Singleton. A singleton class is an idiom to limit the number of
instances of a class. The singleton class is usually instantiated
once and all subsequent requests to this class are forwarded to this
unique instance [13].

Other FOP. This category include idioms of the arrangement of
classes, the ordering of feature modules and the qualification of
member variables.
All classes, that are not nested in other classes are encapsulated in
feature modules. The ordering of feature modules defines the order-
ing of extensions for one single method. Class members qualified
as limited visible, e.g., qualified asprotected, cannot be accessed
from classes others than the class itself and its subclasses.

Figure 5 depicts our graphical notion of FOP mechanisms that
are used in Figure 4. The feature modules BASE and EXTENSION
are shaded and encapsulate the classesLabel andButton and a
mixin class refining the classLabel. (TheString class of the Java-
API is not implemented inside the layer but is depicted to depict
special properties of theLabel class.)

We refer to classes and mixin classes inside feature modules by
([X.]*)Y , where Y is a (nested) feature module and Y is the single
mixin class.

We usedmixin layersto implement the GoF design patterns
in FOP [26]. Mixin layers is one implementation technique for

FOP where each refinement is figured by one class of an OOP
inheritance hierarchy.

3. Goal Statement
3.1 What Do We Adress?

AOP and FOP provide benefits compared to OOP but have difficul-
ties and strengths [3]. In this paper we aim to compare OOP, AOP,
and FOP implementations with respect to modularity.

3.2 Experimentation Methodology

3.2.1 Criteria

We compare the design pattern implementations with respect to the
properties of modularity, i.e.,cohesionandvariability, and thus we
follow existing studies of OOP and AOP [15, 14]. We define these
properties as follows:

Cohesion. An aggregate definition, e.g., a package, of different
program changes, e.g., the introduction of different classes or meth-
ods into the software, can be referred to by a name and is there-
fore cohesive [17]. The named module, e.g., a package, can be ex-
changed and reused and thus development effort decreases.
Cohesive modules rarely reference to other modules and are thus
loosely coupled to other modules.
Our definition of cohesion is similar to the definition ofLocalityof
Hannemann et al. andCohesionof Garcia et al. [15, 14].

Variability. If features of a modularized software shall be able to
change flexibly, the modules of the software have to be composed
in many different ways. Modules that are loosely coupled are pre-
required [17]. Consequently, modules can be exchanged easily.
Tangling of code of different concerns of the software causesclose
coupling of modules resulting in invariant, complex and monolithic
software [16].

Our definition of variability corresponds to the criteriaCompo-
sition Transperencyof Hannemann et al. [15]

In addition, Hannemann et al. used the criteriaReusabilityand
(Un)pluggabilityto evaluate the aspect-oriented design pattern im-
plementations [15]. We do not use these criteria because we argue
them to be imprecise and not significant.

3.2.2 Schedule of Comparison

We adopt the methodology of Hannemann et al. and Garcia et al.
to evaluate programming paradigms [15, 14]. Both studies com-
pared OOP and AOP on the base of a case study of design pattern
implementations. To analyze many diverse applications we reim-
plemented the 23 GoF design patterns in FOP and adopt the OOP
and AOP implementations. For different design patterns we im-
plemented alternative FOP implementations (up to 7 per design
pattern) resulting in 50 different FOP implementations. For com-
parison we choose the implementation that is close to the AOP
counterpart.

We compare the different implementations of the design pat-
terns by repeating the following schedule:

1. We review the aim of the pattern.

2. We give an explanation of the OOP, AOP, and FOP implemen-
tations each followed by a discussion of the specific pros and
cons.

3. We compare the OOP, AOP, and FOP implementations based
on the criteria given in Section 3.2.1.

4. We give a short summary of specific difficulties and strengths
of the OOP, AOP, and FOP implementations that were captured



1 p u b l i c interface ComponentFactory {
2 p u b l i c JLabel createLabel ();
3 ...
4 }

Figure 6. Type limitation through method declarations in the OOP
Abstract Factory implementation.

during the evaluation but are not relevant for the analyzed crite-
ria.

As a summary we give a table that aggregates and balace the
results of the evaluation. A ”+” depicts that the technique performs
well with respect to the criterium while ”-” depicts the lack of
the technique regarding that criterium compared to the other tech-
niques. ”0” depicts the neutral evaluation regarding the criterium
and compared to the other techniques.

4. Case Study
In this section we evaluate the design patterns implemented in OOP,
AOP, and FOP in detail.

Hannemann et al. use Java3 to implement design patterns in
OOP and use AspectJ to implement the aspect-oriented counter-
parts. We use the AHEAD Tool Suite for implementing the patterns
in FOP.

4.1 The Abstract Factory Design Pattern

4.1.1 Intention

Provide an interface for creating families of related or de-
pendent objects without specifying their concrete classes [13].

4.1.2 Implementation

OOP solution. Hannemann et al. applied the pattern to create
different kinds of one graphical user interface (GUI) [15].

Each factory class creates GUI elements of different kinds,
e.g., buttons or labels, and of different properties for each kind
of GUI element, e.g., one factory object creates framed or regu-
lar elements of different kind (e.g.,Button). All GUI elements
(e.g., of typeButton or Label), that are created by one factory
class (e.g.,FramedFactory or RegularFactory), have compat-
ible properties, e.g., all elements are framed or all elements are
regular. The properties of GUI elements created by different fac-
tories differ and may be incompatible. Each GUI is created using
one factory and thus all elements of one GUI have compatible prop-
erties, the elements of different GUI may have different properties
because they were created by different factories. Hence, the choice
of the factory class implies the properties of the graphical elements
that are created. Different factory classes, i.e.,FramedFactory and
RegularFactory, can be exchanged with respect to the common
interfaceComponentFactory. If a referencedFramedFactory
object is replaced by aRegularFactory object the GUI elements
created subsequently are framed instead of regular and vice versa
without affecting a client that creates GUI.

Advantages Exchanging factory objects of different type (e.g.,
RegularFactory and FramedFactory) does not affect the
client that refers to the interfaceComponentFactory. A com-
patible configuration of properties for different GUI elements
to be built, e.g., whether all should be framed, is encapsulated
inside one graphical factory (e.g.,FramedFactory).

Disadvantages The factory classes determine the type for each
kind of GUI element, e.g., a button, that can be created by the

3 http://java.sun.com/

<<interface>>

FramedFactory
createLable()
createButton()
getName()

RegularFactory
createLable()
createButton()
getName()

ComponentFactory
createLable()
createButton()
getName()

Figure 7. Abstract Factory through OOP.
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Figure 8. Abstract Factory through AOP.

factory. Consequently, all GUI elements that should be created
by the factory have to be of the type that is referred to by the
factory class for the according kind of GUI elements, e.g., the
methodcreateLabel of the factoryComponentFactory lim-
its the type of possibly created label objects to be subtype of
the classJLabel (Fig. 6, Line 2).
Different factories may create the same GUI element classes
and thus introducing code replication.
If the implementation of the methodscreateLabel orcreate-
Button should vary for all factory classes in the same way ei-
ther all classes or the common superclass has to change. This
introduces code replication if both variants of the implementa-
tion should be available.

AOP solution. In the AOP implementation the factory class can
create GUI elements, e.g., of typeButton, differently without con-
ditional statements or subclasses of the factory class. The meth-
ods that create the GUI elements are detached into the aspect
ComponentFactoryImplementation (Fig. 8) and are introduced
on demand.

Advantages The advantages of the OOP implementation hold for
the AOP implementation. The interfaceComponentFactory
can be extended by methods without code replication of the
class or its subclasses. Thus, variant implementations of the
methodscreateLabel or createButton can be varied for
all classes, e.g.,FramedFactory, homogenously without in-
troducing code replication.

Disadvantages The AOP implementation does not work with-
out the aspectComponentFactoryImpl because the methods
createLabel andcreateButton are declared in the interface
ComponentFactory but never implemented by its subclasses.
This arises the cognitive distance.
The variable composition of the factory class may hamper com-
patibility of GUI elements applied to that factory class.
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FOP solution. We present 2 solutions for the pattern Abstract
Factory: solution A is close to the AOP implementation (Fig. 9).
Variable methods of the factory class, e.g.,createLabel, are
detached into the feature module COMPONENTFACTORYIMPLE-
MENTATION. Since we extend the interfaceComponentFactory
subsequently using method definitions we transformed it into the
abstract classComponentFactory.
Solution B is depicted in Figure 10. The different implementations
of the methodscreateLabel andcreateButton are transferred
completely to the feature module COMPONENTFACTORYIMPLE-
MENTATION, i.e., no declarations are left in the feature module
BASE.

Advantages The advantages of the OOP and AOP implementa-
tions hold for the FOP solution A and B. Solution B works
without thecomponentFactoryImpl refinement because no
method is declared without being implemented in the feature
module BASE. This decreases the cognitive distance.

Disadvantages The variable composition of the factory class may
hamper compatibility of GUI elements provided by the config-
ured class.

4.1.3 Discussion

Cohesion. Two issues have to be analyzed with respect to cohe-
sion:

• In the OOP implementation the code associated to variable
method implementations (e.g., to the methodCreateLabel)
is closely coupled to the code of the factory classes that is
not variant, e.g., the methodgetName. In the AOP implemen-
tation the variant methods code of the factory classes (method
createLabel) is detached into the aspectComponentFactory-

Implementation but modules of the base program and the
module of the variant aspect are not separated. In the FOP im-
plementation the the different method implementations are sep-
arated, i.e., into the classComponentFactory and the accord-
ing mixin classComponentFactoryImplementation.Compo-

Criteria OOP AOP FOP
Cohesion 0 0 +
Variability 0 + +

Table 1. Evaluation of the pattern Abstract Factory
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Figure 11. OOP implementation of the Adapter pattern.

nentFactory. Furthermore, the FOP implementation sepa-
rated the modules that are non-variant, e.g.,TextCreator,
from the modules that are variant, e.g., the mixin classCreator-

Implementation.Creator.

• In the OOP implementation compatible objects to be created
by a factory object are defined inside one class. In the AOP and
FOP implementations compatible compositions of methods that
create GUI elements are scattered across the factory class and
the aspect and mixin classComponentFactory respectively.

Variability. The OOP implementation does not allow to exchange
the definitions of the methodscreateLabel andcreateButton.
The AOP implementation allows to exchange the implementation
of the factory methods (with respect to the interfaceComponent-

Factory) without causing code replication. The FOP implemen-
tation equivalently does not imply code replication if the factory
method implementations should be exchanged for all subclasses.

4.1.4 Summary

A summary of the evaluation of the Abstract Factory design pattern
is given in the Table 1.

4.2 The Adapter Design Pattern

4.2.1 Intention

Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t
otherwise because of the incompatible interfaces [13].

4.2.2 Implementation

OOP solution. Hannemann et al. applied the Adapter pattern to
invoke incompatible printer objects, e.g., of typeSystemOutPrin-

ter (Fig. 11), from the main method. The print request is in-
tercepted and forwarded to the according printer class by an
adapter object (e.g., of typePrinterAdapter). This adapter ob-
ject is invoked instead of the incompatible printer object of type
SystemOutPrinter. The adapter object adapts the request to fit
the incompatible printer object interface (SystemOutPrinter).
Different adapter classes can be exchanged with respect to the
Writer interface and thus different incompatible printer objects
can be used.

Advantages The usage of incompatible printer objects, e.g., of
type SystemOutPrinter, does not affect the calling main
method. They can be used polymorphically. The adaption
of the print request to fit the interface of the incompatible
printer classSystemOutPrinter is modularized into the class
PrinterAdapter. The printer implementations classes, e.g.,
SystemOutPrinter, do not have to implement a specific in-
terface to be used polymorphic by the main method.
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Figure 12. Adapter pattern in AOP.
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Figure 13. Adapter pattern in FOP.

Disadvantages The adapter classPrinterAdapter only can in-
vokepublic members of theSystemOutPrinter class to per-
form the print request of the main method.
The adapting methodwrite of thePrinterAdapter class has
to be bound dynamically to enable the polymorphic exchange
of different adapter objects – this corrupts performance and re-
source consumption [10].

AOP solution. In the AOP implementation the adapting method
write is introduced into the incompatible printer class (SystemOut-

Printer) by the aspectPrinterAdapter (Fig. 12). The incom-
patible printer classSystemOutPrinter is adapted to be us-
able by the methodmain. The introduction of different adapt-
ing methods, e.g.,write, into the incompatible printer class
SystemOutPrinter prevents changes of the classSystemOut-
Printer to implement a specific interface, e.g.,Writer.

Advantages The advantages of the OOP implementation also
hold for the AOP implementation. The adapting function in-
troduced into the classSystemOutPrinter via ITD has full
access to members of that class (based on the open class mech-
anism of AOP [21]). Therefore, the adapting methodwrite

can invoke protected and private methods of the incompatible
SystemOutPrinter class.

Disadvantages The essential code of OOP classes does not work
without the aspectPrinterAdapter.
The methodwrite has to be bound dynamically although only
one variant may be present at runtime, thus corrupting perfor-
mance and resource consumption [10].
If the classSystemOutPrinter should be adapted to more
than one incompatible caller (e.g., the methodmain) another
aspect may introduce anotherwrite method thus causing com-
piler errors.

FOP solution. We present 2 solutions for the adapter pattern: so-
lution A is close to the AOP implementation (see Figure 13). We in-
troduce the translating methodwrite into theSystemOutPrinter
class and thus the methodmain uses that introduced method of the
SystemOutPrinter class.
Solution B is close to the OOP implementation (see Fig. 14), i.e.,
we introduce the translating method into the adapter classWriter.
Solution B is applicable if the concrete writer does not have to vary
at runtime.

Advantages Solution A keeps the advantages that hold for the
OOP implementation.

Base

Printeradapter

Main
main()

Writer

write()
Writer

SystemOutPrinter
printToSystemOut()

Figure 14. Alternative implementation of the Adapter pattern in
FOP.

Criteria OOP AOP FOP
Cohesion 0 0 0
Variability 0 + +

Table 2. Evaluation of the pattern Adapter

The translating methodwrite has advanced access to the mem-
bers of theSystemOutPrinter class. If mixin layers are used
to implement FOP each refinement is implemented as subclass
and thus access is prevented to private members of the super-
class, i.e., previous refinements. If FOP is implemented using
Jampacks thewrite method can accessall members of the
SystemOutPrinter class that are introduced by prior refine-
ments.

Solution B decreases the number of virtual methods because
the adapting methodwrite is inserted into the writer class stat-
ically bound which improves performance and resource con-
sumption.

Disadvantages The basic code of OOP classes does not work with-
out the refinementPrinterAdapter.
If theSystemOutPrinter class has to be adapted in solution A
to be applicable for different clients different feature modules,
e.g., PRINTERADAPTER, may introduce different versions of
the adaptingwrite method that override each other.
Solution A demand for thewrite method to be bound dynam-
ically thus corrupting performance and resource consumption.

In solution B the classWriter only can use public members of
theSystemOutPrinter class.

4.2.3 Discussion

Cohesion. The techniques OOP, AOP, and FOP are equivalent re-
garding the cohesion in the analyzed implementation of the adapter
pattern. That is because thecompleteclassPrinterAdapter was
transformed into an aspect in the AOP implementation and into a
refinement in the FOP implementation respectively.

Variability. In OOP exchanging the adapter, e.g.,PrinterAdap-

ter, does affect themain method since it has to instantiate a
different class. In the AOP and FOP implementations the adapting
methodwrite can be exchanged flexibly without changes to the
main method, because this method does not refer to the adapter
class but directly to theSystemOutPrinter class.

4.2.4 Summary

A summary is given in Table 2.

4.3 The Bridge Design Pattern

4.3.1 Intention

Decouple an abstraction from its implementation so that the
two can vary independently [13].

4.3.2 Implementation

OOP solution. Hannemann et al. applied the pattern to de-
fine composes and complex operations, e.g.,drawGreeting or



drawText of a Screen class (Fig. 15), based on different versions
of primitive operations, likeprintLine andprintDecor. These
primitive operations are detached to the classesCrossCapital-

Implementation andStarImplementation. The different im-
plementations of the primitive operations including classes (Cross-

CapitalImplementation and StarImplementation) can be
exchanged with respect to the interfaceScreenImplementation

and thus the definition of the composed operations can be reused.
The composed operations, e.g.,drawGreeting, are defined in the
classesInformationScreen andGreetingScreen thus extend-
ing the interface ofSceen objects.4

The interface of a complex object is implemented using an primi-
tive interface that forwards calls to different implementing classes.

Advantages The interface ofScreen objects and its implementa-
tion can be extended independently. Changing the implementa-
tion of aScreen object at runtime does not affect clients, like
themain method.

Disadvantages If the class hierarchy implementing the primi-
tive operations, e.g.,ScreenImplementation, should be ex-
changed, i.e., the static type of the classes implementing the
primitive operations should be exchanged, the classScreen

has to be changed or extended – this either demands for code
replication or invasive changes. Consequently, classes that im-
plement the primitive operations, e.g.,printLine, have to im-
plement the interfaceScreenImplementation.

The primitive operations, e.g.,printDecor, inside theScreen
class forward requests to the classes implementing the primi-
tive operations, e.g., to the classStarImplementation, thus
decreasing performance. The methods implementing the prim-
itive operations inside theStarImplementation class have to
be bound dynamically to be polymorph regarding the interface
ScreenImplementation thus corrupting performance and re-
source consumption.

AOP solution. The AOP implementation extracts the primitive
operations, e.g.,printDecor, (the forwarding methods) into the
aspectAbstractionImplementation (Fig. 16). Additionally the
class to implement the primitive operations, e.g.,ScreenImple-

mentation, is defined by the aspect.

Advantages The advances of the OOP implementation also hold
for the AOP implementation. Different classes, e.g.,CrossCa-

pitalImplementation, that implement the primitive opera-
tions, likeprintDecor, do not have to be subtype of a common
interface.

Disadvantages The program does not work without the aspect.

FOP solution. We present two solutions for the Bridge design
pattern: solution A (Fig. 17) is close to the AOP implementa-
tion, that is, the methods that forward the primitive operations
(i.e.,Screen.drawText) are detached into the feature module AB-
STRACTIONIMPLEMENTATION. Additionally, the mixin class of
this feature module defines the class that implements the primitive
operations, e.g.,ScreenImplementation.

Solution B is depicted in Figure 18. Since no method im-
plementation and member reference is left inside theScreen

class, we omit this class but transformed theScreen mixin into
the new super-class of the composed operation classes (e.g.,
InformationScreen)

Advantages The advantages of the OOPand AOP implementa-
tions hold for the FOP solution A.

4 To invoke methods of theGreetingScreen class that are not declared in
theScreen class casts have to be performed.
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Figure 18. Complexity reduced implementation of the Bridge pat-
tern in FOP.

Criteria OOP AOP FOP
Cohesion - 0 +
Variability 0 + +

Table 3. Evaluation of the pattern Bridge

Solution B reduces the number of classes by omitting the ab-
stract classBase.Screen and the number of methods that are
bound dynamically, e.g.,drawText, thus improving perfor-
mance and resource consumption.

Disadvantages The basic implementations (inside the feature
module BASE) do not work without applying the refinement
ABSTRACTIONIMPLEMENTATION.

4.3.3 Discussion

Cohesion. In the OOP implementation the code regarding the
definition of complex operations, e.g.,drawText, is coupled with
code regarding variant implementations of the primitive operations.
The AOP implementation separates the variant class members from
the essential but lacks in separating the modules that implement
variant and invariant behavior respectively. In the FOP implementa-
tion the variant primitive operations are decoupled from the essen-
tial methods by detaching and the modules implementing variant
and invariant operations are separated.

Variability. In the OOP implementation only classes can be used
to perform the primitive operations that implement the needed
methods and that are subtype of the interfaceScreenImplementa-

tion.
In the AOP and FOP implementation every class that provides ac-
cording method definitions can be assigned to perform the primitive
operations – they do not have to implement a common interface.

4.3.4 Summary

Since the system does not work without an aspect, the aspect must
have been planned and prepared from the beginning. Therefore it
is questionable whether it is worse to transform the inheritance tree
in OOP design instead of using the aspect that is hard to trace.
An overview over the evaluation of the Bridge pattern is given in
Table 3.

4.4 The Builder Design Pattern

The Builder pattern is applied to create different complex docu-
ments.
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Figure 15. OOP implementation of the Bridge pattern.
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Figure 16. AOP implementation of the Bridge pattern.

<<interface>>

StarImplemenation CrossCapitalImplemenation
drawGreeting()

Abstraction−
setImplementor()
drawText()
drawTextBox()

Implementation

ScreenImplementation
printLine()
printDecor()
printText()

printLine()
printDecor()
printText()

printLine()
printDecor()
printText()

Base
GreetingScreen

drawText()
drawTextBox()

implementor:ScreenImplementation
Screen

Screen

drawInfo()
InformationScreen

Figure 17. Direct implementation of the Bridge pattern in FOP.

4.4.1 Intention

Separate the construction of a complex object from its rep-
resentation so that the same construction process can create
different representations [13].

4.4.2 Implementation

OOP solution. Different complex objects (text and XML docu-
ments) are created/initialized by concrete Builders that compose
the documents out of parts, e.g., attribute names and values. The
concrete Builders implement the common abstract classCreator

which is referenced by a client that uses the Builder classes. The
complex document to build is hold in a document representation
member of typeString.

Figure 19 depicts the concrete Builder classesTextCreator

andXMLCreator. These classes can vary with respect to the com-
mon abstract classCreator without a client, that only references
theCreator class, has to change. Hence, the client is unaware of
the concrete format of the complex document it is building. A mem-

String

processType()
processAttribute()
processValue()

TextCreator
processType()
processAttribute()
processValue()
getRepresentation()

XMLCreator

processType()
processAttribute()
processValue()
getRepresentation()

representation:String
Creator

append()
toString()
set()

Figure 19. OOP design of the Builder pattern.

ber variable of typeString (Fig. 20, Line 2) holds the document



1 p u b l i c abstract c l a s s Creator {
2 p r o t e c t e d String representation;
3 p u b l i c abstract v o i d processAttribute

(String ´ ´ newAttribute);
4 }

6 p u b l i c c l a s s TextCreator extends Creator {
7 p u b l i c v o i d processAttribute(String ´ ´ newAttribute){
8 representation.append("Its "+newAttribute+" is ");
9 }

10 }

Figure 20. Abstract and concrete Builder classes in OOP.
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Figure 21. AOP design of the Builder pattern.

representation in XML or text format and is manipulated directly
by the concrete Builders (e.g.,TextCreator, Line 8).5

Advantages The concrete Builder classes, e.g.,XMLCreator,
can be exchanged at runtime due to the uniform superclass
Creator. Thus, different complex documents (e.g., XML or
text documents) can be built by a client that only is aware of the
uniform abstract classCreator.

Disadvantages The document representation member – here of
typeString (cf. Fig. 19) – is fixed. If the type of the document
representation member should vary, e.g., the member should
become of typeFile, and both variants should be available,
the abstract classCreator has to be extended or manipulated
and thus code replication of theCreator class and subclasses,
e.g.,XMLCreator, is introduced.

AOP solution. Hannemann et al. introduce additional flexibility
to the OOP solution of the Builder pattern by detaching the doc-
ument representation member from theCreator class and encap-
sulating it into an aspect (Fig. 21). Figure 22 depicts an excerpt of
the aspectCreatorImplementation that introduces the member
of the document representation into the interfaceCreator via IDT
(Line 2). Furthermore, an error declaration shields the new docu-
ment representation member from access by classes others than the
Creator class and subclasses (Lines 3–7).

Advantages The advantages of the OOP implementation hold for
this AOP implementation. The static type of the document rep-
resentation member can vary by applying different aspects each

5 We applied minor renamings to the implementation to improve compre-
hensibility. [15] implied that the document representation member fulfills
differentString operations.

1 p u b l i c a s p e c t CreatorImplementation {
2 p u b l i c String Creator.representation;
3 d e c l a r e error:

(set( p u b l i c ´ ´ String ´ ´ Creator +. representation)
4 || get( p u b l i c String Creator +. representation))
5 && ! ( w i t h i n (Creator +)
6 || w i t h i n (CreatorImplementation)):
7 "variable result is aspect protected. Use

getResult () to access it";
8 }

Figure 22. Access limitation to class members in AOP.

1 r e f i n e s c l a s s Creator{
2 p r o t e c t e d String representation;
3 }

Figure 23. Member shielding in the FOP implementation.

introducing this member using a different type for it.
The document representation member is hidden by the inter-
faceCreator. Hence, exchanging the document representation
member does not affect the clients, that use Builders to create
documents. (The Builders public interfaceCreator does not
change.)

Disadvantages Classes that are used for the document represen-
tation member, e.g.,String or File, have to fulfill different
properties. The builder classesTextCreator andXMLCreator
call methods of the document representation member directly,
e.g., the methodappend (the called methods are depicted in
the String class of Figure 21)6. The Builder classes require
these methods to be implemented in every class that is used for
the document representation member but they do not reference
an explicit interface class. If other classes, likeFile, should
be used to hold the document representation, then they have to
provide this implicitely required interface.

FOP solution. We present two FOP solutions: solution A is close
to the AOP implementation (Fig. 24). The document representa-
tion member is introduced via a mixin. To shield the document
representation member from external access, the according mem-
ber variable is qualified as inaccessable for classes others than the
Creator classes and subclasses, i.e., it is qualified asprotected

(Fig. 23, Line 2).
Figure 25 depicts solution B that allows to exchange the concrete
format of the document, i.e., text or XML, only at compile time but
not at runtime. We introduce the functions to build text or XML
documents directly into theCreator class using mixins. Hence,
the interface of the classCreator is not declared explicitly by an
interface class but is assembled at compile time by superimposing
the mixin classes of the feature modules.

Advantages Solution A allows to replace the concreteCreator
classes (e.g.,XMLCreator) at runtime because they implement
a common interface, i.e., solution A allows to replace the com-
plex document, that is build, at runtime.
The type of the document representation member, e.g.,String

or File, can vary without replicating theCreator class or its
subclasses because the member is detached into a mixin class.
Solution B decreases the overhead that is needed for runtime
configuration and that is caused by dynamic binding, e.g., for
C++ implementations. Java implementations are not improved

6 To improve the comprehensibility we renamed some operations.
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Figure 25. Static composition of the Builder class.

with respect to performance since in Java all methods are bound
dynamically [9].

Disadvantages In solution A the required properties of the classes,
that are used for the document representation member, are
given implicitly (similar to the AOP implementation), e.g., the
methodappend is required by the Builder classes.
Solution B does not allow to replace the concrete Builder im-
plementation, i.e., the format of the complex documents that
are build (text or XML), at runtime.

4.4.3 Discussion

Cohesion. To evaluate the different implementations we have to
consider different aspects:

• In OOP the initialization of the complex document is coherently
implemented in the classCreator. In the AOP implementation
the document representation member is detached and the code
regarding the Builder definition (classCreator) is scattered
across the classCreator and the aspectCreatorImplementat-
ion. In the FOP implementation the document representation
member of theCreator class is detached into the refinement
CREATORIMPLEMENTATION, i.e., the code associated to the
Creator class is scattered across the feature modules BASE
and CREATORIMPLEMENTATION.

• The OOP implementation couples code of different concerns,
i.e., the variant types of the document representation member
(e.g.,String or File) and the Builder methods, that use this
member but are invariant, into one class which decreases cohe-

Criteria OOP AOP FOP
Cohesion 0 0 +
Variability 0 + +

Table 4. Summarized evaluation of the Builder design pattern.
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Figure 26. OOP implementation of the Chain of Responsibility
pattern.

sion. In the AOP implementation the code associated to variant
types of the document representation member is detached from
the classCreator into the aspectCreatorImplementation,
i.e., but the variant extending aspects are not separated from the
code that is not variant, e.g.,TextCreator. In the FOP imple-
mentation code regarding variant types of the document rep-
resentation is not coupled but cohesively separated in feature
modules.

Variability. In the OOP implementation the type of the document
representation member in the classCreator is fixed. Exchang-
ing the member type leads either to code replication or invasive
changes and thus worsen reusability and complexity [12].
AOP and FOP improve variability through decoupling the Builder
classes (TextCreator, XMLCreator) from their document rep-
resentation members. In the following document representation
members of different types, e.g.,String, can be used by the XML
and text Builder classes

4.4.4 Summary

In the code documentation Hannemann et al. admit that no advan-
tage associated to the modularity is provided by the AOP imple-
mentation. A summary of our evaluation of the Builder implemen-
tations is given in Table 4.

4.5 The Chain of Responsibility Design Pattern

4.5.1 Intention

Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the
chain until an object handles it [13].

4.5.2 Implementation

OOP solution. Hannemann et al. used the pattern to allow differ-
ent graphical objects (handlers) to perform actions when a button is
clicked. We present two solutions. We refer to the approach of Han-
nemann et al. as solution A, see Figure 26. A click on a button is
coded into an object of the typeClick that is forwarded to different
handler objects, e.g., of typeButton, Panel, or Frame. After ana-
lyzing the overgivenClick object, e.g., using theClick.hasCtrl
method, each invoked handler object decides either to perform ac-
tions on its own or to forward theClick object to the next possi-
ble handler. Hence, each handler, e.g., of typeFrame, refers to a
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Figure 27. Alternative OOP implementation of the Chain of Re-
sponsibility pattern.

succeeding handler object potentially performing actions based on
this click – consequently a recursive chain of handler objects re-
sults. The succeeding handler object, e.g., of typePanel, of each
preceeding handler object, e.g., of typeFrame, can be exchanged
with respect to the interfaceClickHandler, i.e., the chain can be
adapted.7

We implemented an alternative solution B that uses a hashmap
managed by a singleton class to define the succeeding handler ob-
ject of a given handler object (Fig. 27), i.e., to determine thePanel

object as succeeding handler of theFrame object.
The graphical elements that potentially handle a click also can be
referred to by a iterative list inside theButton class (not depicted).

Advantages Objects, that can perform actions in response of a
click on a button, e.g.,Frame, can be assigned flexibly to the
clicked object of typeButton. Hence, the class of the objects
triggering the chain (Button) is not affected and does not have
to change when the chain differs.

Disadvantages There is no guaranty, that any handler object as-
signed to the chain of the button perform actions after a click
on the button at all.
The classes of the objects assigned to the chain have to pro-
vide the chain-specific methods, i.e.,handleRequest and
acceptRequest, and have to be subtype of the interface
ClickHandler.
In solution A the handler classes, e.g.,Frame, can only be
used as chain elements since the succeeding handler reacting
on clicks has to be defined at instantiation time. This draw-
back is not present in solution B since the successor is stored
coherently in theChainManager class.

AOP solution. In the AOP implementation the members of the
handler classes performing the evaluation (acceptRequest) of
clicks and the actions to perform at clicks (handleRequest) are
detached from the handler classes and are merged into the as-
pectClickChain (Fig. 28). That is, the aspectClickChain intro-
duces the methods associated to the chain, e.g.,acceptRequest

and handleRequest, into the handler classes, e.g.,Frame. The
order in which the handler objects are called to perform actions
based on a click is defined in a hashmap that is a field of the as-
pectChainOfResponsibilityProtocol that is filled with han-
dler objects, e.g., of typeFrame, and their succeeding handler

7 Furthermore, it is possible to declare the member associating the succeed-
ing handler inside anabstract classClickHandler – that improves cohe-
sion (not depicted).
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Figure 28. AOP implementation of the Chain of Responsibility
pattern.

objects. The hashmap is manipulated using aspect methods, e.g.,
setSuccessor, i.e., the order of chain handlers is determined by
manipulating the hashmap.
The invokation of the chain is applied using PCA (eventTrigger)
that provides the clicked button object and theClick object.8

Advantages The advantages regarding the OOP implementation
are kept. Every class, e.g.,Panel, can be assigned to be han-
dler of a click – the required methods and inheritance decla-
rations are inserted by theClickChain aspect. The manage-
ment of the handler objects in the chain is merged into the
ChainOfResponsibilityProtocol aspect, that is, the dec-
laration of the respective successor of a handler is not scattered
across the handler classes, e.g.,Frame.

Disadvantages There is no guaranty that actions are performed at
all in response of a click by any assigned handler object.

FOP solution. We present three different FOP implementa-
tions for that pattern. Solution A is close to the AOP imple-
mentation, see Fig. 30. We extend the class of the clicked ob-
jects (Button) to invoke the chain, i.e., the action listener de-
fined inside the classButton. To extend the anonymous class
Actionlistener (Fig. 29) we have to extract the class into the
classMyActionListener, we refined this class to invoke the re-
acting handler objects.
The order of handler objects to be invoked after a click is defined
by manipulating the hashmap that stores the succeeding handler
objects for each invoked handler.
In solution B we extend the method that is called after the button is
clicked (methodButton.doClick), i.e., thecall pointcut turns
into an execution pointcut of that method effectively (Fig. 31).
Solution C is an extension of solution A. For solution C we de-
tach the method evaluatingClick objects (acceptRequest) and
the definition of actions to be performed subsequently (method
handleRequest) of every class into feature modules, e.g.,chain.-

clickChain.chainElements.Frame, see Figure 32. Addition-
ally, the invocation of the chain of handlers is detached into the
feature module EVENTTRIGGERand can be exchanged.

Advantages The advantages of the OOP implementation also hold
for the FOP implementation. Additionally, every class can be
assigned to invoke actions when a button is clicked – the re-
quired methods, likeacceptRequest and handleRequest,
are introduced subsequently by the refinement CLICK CHAIN .
The chain is created by ordering the handlers using a hashmap.
In solution C the chain specific methods, e.g.,handleRequest,
for all classes, e.g.,Panel, can vary independently.

8 The button object clicked and theClick object are received by evaluating
the call of theActionListener of the button to a hook methoddoClick.
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1 p u b l i c c l a s s Button extends JButton i m p l e m e n t s
ClickHandler {

2 p u b l i c Button(String label , ClickHandler successor)
{

3 s u p e r (label);
4 t h i s .successor = successor;
5 t h i s .addActionListener( new ActionListener () {
6 p u b l i c v o i d actionPerformed(ActionEvent ae) {
7 handleClick(new Click(ae));
8 }
9 });

10 }
11 }

Figure 29. Anonymous visitor class in the AOP implementation
that triggers the chain.

Disadvantages As in OOP and AOP, there is no guaranty that any
object, that is assigned as handler to the chain, ever perform
actions when a button is clicked.

4.5.3 Discussion

Cohesion. To evaluate the implementations with respect to cohe-
sion, we have to consider two issues:

Cohesion of the chain: The OOP approach of the pattern scatters
the code associated to the chain, e.g., methodhandleClick,
across all handlers, e.g., of typeFrame, that potentially in-
voke actions after a button is clicked. The AOP implementation
merges the pattern into theChainOfResponsibilityProtocol
andClickChain aspects, hence, it stays scattered. In the FOP
implementation the pattern specific code is merged into the fea-
ture moduleCHAIN.

Cohesion of the graphical element implementations: The OOP
implementation merges the code associated to one class. AOP
scatters the code regarding one graphical element, e.g.,Panel,
across the respective classPanel and the aspectClickChain.
In the FOP implementation the code associated to one handler is
scattered across the feature modulesBASE and CLICK CHAIN .

In aggregation we balance the cohesion of the pattern implementa-
tions to be equivalent regarding the cohesion.

Variability. To evaluate variability, we have to consider two is-
sues:

Varying the classes: In the OOP implementation the handler
classes, e.g.,Frame, Panel, andButton, have to implement
the interfaceClickHandler.
In the AOP implementation every class can be assigned to be
member of the chain, i.e. to handle a click event. The FOP im-
plementation similarly allows to assign every class to be a click
handler.

Varying the chain: In the OOP implementation the code regard-
ing the different chain elements is loosely coupled and thus
changes to the events invoking the chain, e.g., a click onto a
button, or the event handling methods, e.g.,handleClick, can
be applied through subclassing, i.e., the set of events can be ex-
tended only.
In the AOP implementation the definition of variant triggering
events (pointcuteventTrigger) is tangled with the code of
the graphical elements of the chain, e.g.,handleRequest, thus
they can not be exchanged independently.
In the FOP implementation the triggering events can be ex-

Criteria OOP AOP FOP
Cohesion 0 0 0
Variability 0 0 +

Table 5. Evaluation of the pattern Chain of Responsibility

changed without changing the event handling methods by re-
placing the feature moduleTRIGGEREVENTS (Fig. 32).

4.5.4 Summary

The curse of the dominant decomposition [27] causes code tangling
in the OOP and AOP solutions. The FOP implementation either de-
taches the code regarding the chain from the handler objects, e.g.,
of type Frame, and the implementation separates the class exten-
sions of the different handlers, i.e., two dimensions are separated.
In the AOP implementation Hannemann et al. used ITD to extend
an interface hosted by the same aspect, we advice to use abstract
classes for that.
The hashmap implementation enforces the programmer to imple-
ment a lot of typecasts. That is tedious and error prone [19].
Thereusableclasses leftPanel, Frame, andPanel areempty, be-
side the hook methoddoClick of the Button class that also is
empty. We argue that this design is bad.
A summary is given in Table 5.

4.6 The Command Design Pattern

4.6.1 Intention

Encapsulate a request as an object, thereby letting you pa-
rameterize clients with different requests, queue or log re-
quests, and support undoable operations [13].

4.6.2 Implementation

OOP solution. Hannemann et al. apply the pattern to assign dif-
ferent actions to a button element. The button refers to one action of
typeCommand by a fieldcommand (33). The type of object to per-
form the command, e.g.ButtonCommand or ButtonCommand2,
can be exchanged with respect to the interfaceCommand. The
methodclicked is invoked by the action listener and forwards
requests to the membercommand.

Advantages Actions can be manipulated, extended, stored, and
made undone by manipulating theCommand objects. The trac-
ing of different method invocations can be achieved by log-
ging the methods of a command class. The actions, e.g.,
ButtonCommand1, applied to the button object can vary at run-
time.
One command can be refered to by many classes thus improv-
ing reuse.

Disadvantages If objects of a class, e.g.,ButtonCommand1, shall
be invoked to perform actions, these classes have to implement
the interfaceCommand. The forwarding methodclicked de-
creases performance. The code regarding the variant action per-
forming objects is tangled with the main concern of the class
Button by the field and the methodclicked.
The Command object, e.g., of typeButtonCommand1, can not
use private or protected members to perfórm actions after a
click. The code associated to theButton class is scattered
accross the classesButton, Command, ButtonCommand and
ButtonCommand2.

AOP solution. The concrete action to invoke for eachButton ob-
ject is assigned inside a hashmap member of the aspectCommand-

Protocol (Fig. 34). The aspect methodssetCommand andget-
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Figure 33. OOP implementation of the Command pattern.
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Figure 34. AOP implementation of the Command pattern.

Command manipulate the action objects, e.g., of typeButtonCom-

mand1, assigned to buttons. The action regarding one button, i.e.,
the assigned hashmap element, is invoked by advice that extends
the hook method of theButton class (clicked) that is called when
aButton object is clicked.
Additionally, the AOP implementation assigns parameter objects,
e.g., of typePrinter, to each action object, e.g.,ButtonCommand1.
These action parameters are assigned in an additional hashmap
for eachButton object. The action parameter is assigned by the
classes using the aspect methodsgetReceiver andgetReceiver.
The aspectButtonCommanding introduces the commands to in-
voke after an event, e.g.,executeCommand, into theButtonCom-
mand2 class.

Advantages The advantages of the OOP implementation hold for
the AOP implementation. Additionally, theButton class is not
aware that its objects forward method calls toCommand objects.

Disadvantages The code of the methodclicked is scattered
across the respective classButtonCommand2 and the aspect
ButtonCommanding.
The hashmap implementation demands for multiple type casts
due to empty interfaces.
In this pattern multiple inheritance is introduced. The aspect
ButtonCommanding implements the methodisExecutable
of the interfaceCommand using ITD. Due to parent declarations
the methodisExecutable of the interfaceCommand is inher-
ited twice.
The usage of a hashmap introduces performance drawbacks due
to indirect method calls (Two indirect method calls are needed
to compute the command object associated to a button-click
and to compute the parameter of the action object.)
Hook methods, e.g.,Button.clicked, have to be anticipated
and complicate the code but are necessary to invoke the action
performing classes, e.g.,ButtonCommand and ButtonCom-

mand2.

Criteria OOP AOP FOP
Cohesion 0 + +
Variability 0 + +

Table 6. Evaluation of the pattern Command

FOP solution. We present 2 FOP solutions: Our solution A is
close to the AOP implementation (Fig. 35). Similar to the AOP im-
plementation two hashmaps are used to assign the button to an ac-
tion performing class, e.g.,ButtonCommand or ButtonCommand2,
and to assign the parameter of the command, e.g., aPrinter ob-
ject. The hashmap is kept in a singleton object. The singleton object
is invoked by the method extensionButtonCommanding.Action-
Listener.actionPerformed to get the associated action object.
In solution B we omit the empty classButtonCommand2 in the
feature modulePREBASE and BASE but introduce the fully defined
class in the feature module BUTTONCOMMANDING .

Advantages The advantages of the OOP and of the AOP imple-
mentation hold for the FOP implmentation.

Disadvantages Using hashmaps causes several type casts. Solu-
tion A scatters the feature module that implements the com-
manding intoPREBASE and COMMANDING to avoid multiple
inheritance.

4.6.3 Discussion

Cohesion. In the OOP implementation the classButtonCom-
mand2 is closely coupled to variant implementations of theclicked

method of theCommand interface. In the AOP and FOP implemen-
tations the classButtoncommand2 is decoupled from the variant
Command interface.

Variability. We have to consider 2 issues:

• In the OOP implementation classes that objects are assigned to
perform actions after a click on a button, e.g.,ButtonCommand

orButtonCommand2, are restricted to be a subclass theCommand

interface and to provide the methodexecuteCommand. In the
AOP and FOP implementation every class can be used to per-
form actions after a click event. The subtype declaration regard-
ing theCommand interface and theexecuteCommand method
are introduced subsequently.

• In the OOP implementation theButton objects depend on ob-
jects of the classesCommand, ButtonCommand andButtonCom-
mand2. In the AOP as in the FOP implementation the classes
Button, ButtonCommand, andButtonCommand2 can be used
with or without each other, they can vary flexible.

4.6.4 Summary

The reusable classesButtonCommand2 of the AOP and FOP im-
plementations are empty despite an empty hook method thus the
benefit in reuse is questionable.

4.7 The Composite Design Pattern

4.7.1 Intention

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets client treat individual objects
and compositions of objects uniformly [13].

4.7.2 Implementation

OOP solution. The pattern is used to model a file-system tree
(FST) including atomicFile objects and composedDirectory
objects. TheDirectory andFile objects can vary with respect
to the interfaceFileSystemComponent (Fig. 37) and thus one
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Figure 35. FOP implementation of the Command pattern.
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<<interface>>

LinkedList

File
children:LinkedList

add()

remove()

getSize()

Directory

FileSystemComponent
add()

remove()

getSize()

add()

remove()

getSize()

Figure 37. OOP implementation of the Composite pattern.

compound directory object can refer to files or nested directory
objects.

Advantages Composed and atomic objects, i.e.,Directory and
File objects, can be exchanged without affecting the manipu-
lating class, e.g., themain method.

Disadvantages The methods manipulating the FST are scattered
across the interfaceFileSystemComponent and its subclasses
File and Directory. Equivalently, functions to be applica-
ble for the whole FST, e.g.,getSize, are scattered. Compos-
ite classes, e.g.,File or Directory, depend on the interface
FileSystemComponent to be reusable.

AOP solution. In the AOP implementation the aspectComposite-

Protocol merges the methods to compose the FST classes, e.g.,
CompositeProtocol.add, see Figure 38. That manipulates a
hashmap of a singleton object. Hence, the aspect is used as a

singleton. The aspectFileSystemComposition introduces the
recursive functions,subSum andprintStructure to be applied
on the FST.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
Methods to be applied onto the whole FST, e.g., computing the
sum of the tree elements (subSum), are merged into the aspect
FileSystemComposition.

Disadvantages Recursive methods, e.g.,printStructure or
subSum to be performed on the FST, are scattered across the
aspectsCompositeProtocol andFileSystemComposition
(the methodFileSystemComponent.printStructure that
is defined and uses the methodsrecurseOperation and
recurseFunction of the aspectCompositeProtocol (Fig. 39,
Lines 13–18) and give over an anonymous visitor class (Line
14). Thus, the AOP implementation appears very complex com-
pared to the OOP implementation that is depicted in Figure 40.
The implementation of the recursive functionsprintStruct-

ure (Fig. 39) andsubSum introduces several indirections into
the control flow at runtime due to the hashmap evaluation and
the application of the visitor object.
The implementation of the methodsubSum for the classFile
is tangled with the implementation of the methodsubSum for
other classes. This also holds for theprintStructuremethod.
Furthermore, the definitions of the different methodssubSum

andprintStructure are coupled with each other in the as-
pect.

FOP solution. We present 2 FOP approaches for that pattern: So-
lution A is close to the AOP implementation, see Figure 41. The
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Figure 38. AOP implementation of the Composite pattern.

1 CompositeProtocol{
2 p u b l i c Enumeration recurseFunction(Component c,

FunctionVisitor fv) {
3 Vector results = new Vector();
4 f o r (Enumeration enumM = getAllChildren(c); enumM.

hasMoreElements (); ) { / / me thod c a l l s t o t h e i r
c h i l d r e n

5 Component child = (Component) enumM.nextElement ();
6 results.add(fv.doFunction(child));
7 }
8 r e t u r n results.elements ();
9 }

10 }
11
12 FileSystemComposition extends CompositeProtocol{
13 p u b l i c i n t Directory.subSum() {
14 Enumeration enumM = FileSystemComposition.

getInstance ().recurseFunction( t h i s , new
FunctionVisitor () {

15 p u b l i c Object doFunction(Component c) {
16 r e t u r n new Integer(c.subSum());
17 }
18 });
19
20 i n t sum = 0;
21 w h i l e (enumM.hasMoreElements ()) {
22 sum += (( Integer) enumM.nextElement ()).intValue ();
23 }
24 r e t u r n sum;
25 }
26 }

Figure 39. AOP recursive function using an anonymous visitor
class and indirection to aspect.

1 p r i v a t e s t a t i c v o i d
printStructure(FileSystemComponent comp) {

2 indent();
3 System.out.println(comp);
4 indent +=4;
5 f o r ( i n t i=0; i<comp.getChildCount (); i++) {
6 printStructure(comp.getChild(i));
7 }
8 indent -= 4;
9 }

Figure 40. External OOP implementation traversing an recursive
structure.
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Figure 42. Alternative FOP implementation of the Composite pat-
tern.

FST-classes are assigned to the FST object using a hashmap in
the singleton classFileSystemComposition. The recursive func-
tions are assigned to the FST-classes using mixins for each FST-
class. The visitor classesVisitor andFunctionVisitor are used
by the recursive methods.
In solution B (Fig. 42) the recursive functions are assigned to each
class of the FST according to the type of the FST-class. We omit-
ted the visitor by invoking the children retrieved from the singleton
classFileSystemComposition directly (Fig. 43). The children
are retrieved (Line 5), traversed (Line 6), and directly invoked (Line
7). Additionally, the refinements that compose FST classes (e.g.,
feature module FILESYSTEMCOMPOSITION) are separated from
the mixin classes of the FST classes (feature module FILESYS-
TEMELEMENTS).

Advantages The advantages of OOP hold for the FOP implemen-
tations.
The code to compose the FST is merged into the singleton class
CompositeProtocol. The recursive functionsprintStruct-
ure andsubSum to be applicable for the FST are not scattered
but merged in the feature modules FILESYSTEMCOMPOSI-
TION andMAKE COMPOSITEAFTER.
Solution B only introduces one indirection for retrieving the
child of one FST element out of a hashmap to compute
a recursive function. Figure 43 shows, that the child ele-
ments of one FST element are gathered from the singleton
FileSystemComposition (Lines 5–6) and are accessed di-
rectly (Line 7).

Disadvantages We used mixin layers to implement FOP, that en-
forced us to split the extension of theFile class so that it can
access members that are introduced in the classBase.File.

4.7.3 Discussion

Cohesion. We have to consider three issues for evaluating cohe-
sion of these implementations:

• OOP scatters the implementation of the recursive functions,
e.g., getSize, across the classesFileSystemComponent,
File, andDirectory. In the AOP implementation the imple-
mentation of each recursive function is scattered, e.g.,subSum

orprintStructure, across the aspectsCompositeProtocol,
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Figure 41. Direct FOP implementation of the Composite pattern.

1 p u b l i c v o i d printStructure(final PrintStream s) {
2 FileSystemComposition.indent();
3 s.println("<Composite >"+ t h i s );
4 FileSystemComposition.indent +=4;
5 f o r (Enumeration _enum = FileSystemComposition.

getInstance ().getAllChildren( t h i s ); _enum.
hasMoreElements (); ) {

6 Component child = (Component) _enum.nextElement ();
7 child.printStructure(s);
8 }
9 FileSystemComposition.indent -=4;

10 }

Figure 43. Internal FOP implementation traversing an recursive
structure without anonymous visitor.

andFileSystemComposition. FOP only scatters the code of
recursive functions, that have to access members of the base
class, e.g.,subSum across the feature modulesMAKE COMPOS-
ITE and MAKE COMPOSITEAFTER. Other recursive functions,
like printStructure can be implemented cohesively in the
feature moduleMAKE COMPOSITE.

• The OOP implementation merges the code associated to each
FST element, i.e.,File and Directory, in each respective
class. In the AOP implementation the code regarding each
FST element class, e.g.,File, is scattered across the aspects
CompositeProtocol, andFileSystemComposition. In the
FOP implementation the code regarding the file system compo-
nents is scattered across the feature modulesMAKE COMPOSITE
andMAKE COMPOSITEAFTER.

• In the OOP implementation the code to compose the FST, e.g.,
the methodsadd or remove, is scattered across all classes and
interfaces. The AOP and FOP implementation merges the code
to compose the FST in the aspectCompositeProtocol and the
feature module COMPOSITEPROTOCOLrespectively.

Variability. We have to consider 2 issues:

• In the OOP implementation the classes to act as file sys-
tem components are restricted to those implementing the
FileSystemComponent interface. In the AOP and FOP im-
plementations every class can be assigned to be part of the FST.

• In the OOP approach the implementation of single FST classes
can vary independently. The AOP implementation tangles the

Criteria OOP AOP FOP
Cohesion 0 0 0
Variability 0 0 +

Table 7. Evaluation of the pattern Composite

code of different FST classes and thus prevents variation. The
FOP solution (B) provides to exchange implementations of
single classes of the FST.

4.7.4 Summary

The code of Figure 39 and Figure 40 prints the composite structure
using AOP and OOP mechanisms respectively. We argue, that the
method of Figure 40 is much more convinient to the programmer
than the AOP implementation (Fig. 39) that introduces multiple
indirections, anonymous classes and aspects.
A summary is given in Table 7.

4.8 The Decorator Design Pattern

4.8.1 Intention

Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclasing for
extending functionality [13].

4.8.2 Implementation

OOP solution. Hannemann et al. applied the pattern to enhance
the output of a printer object (ConcreteOutput) by introducing
additional characters into the printed string object. Decoration ob-
jects (e.g., of typeStarDecorator andBracketDecorator) are
used instead of the printer objects (of typeConcreteOutput).
The decorator objects refer to the printer object by an object ref-
erence and forward print requests to the referred printer object.
Before or after forwarding the requests the parameter object of
type String is enhanced by additional characters, e.g., brackets
(in classBracketDecorator) or stars (in classStarDecorator).
To replace the printer objects, the decorator objects, e.g., of
type BracketDecorator, have to implement the same interface
Output, see Figure 44.

Advantages Decorator objects can be exchanged at runtime.
The printer classOutputImplementation can be exchanged
without need for code replication or inheritance.



<<interface>>

StarDecorator
print()

BracketDecorator
print()

ConcreteOutput OutputDecorator

Output
print()

print() outputComponent:Output

print()

Figure 44. OOP implementation of the Decorator pattern.

around:print()

ConcreteOutput
print()

BracketDecorator
around:print()

StarDecorator

Figure 45. AOP implementation of the Decorator pattern.

Disadvantages Decorators, e.g.,BracketDecorator, include
forwarding methodsfor all methods declared in the printer
interface, e.g.,print, thus decreasing performance.
Decorator objects only can extend public members of the
printer objects.
To decorate a method using the design pattern Decorator
at least this method has to be bound dynamically.9 In the
implementation presented all methods of the printer class
ConcreteOutput, e.g., print, are bound dynamically thus
decreasing performance and improving resource consump-
tion [10].

AOP solution. To enhance the argument string of the printer with
additional characters, the aspectsStarDecorator andBracket-
Decorator intercept the calls to the printer functions using PCA.
The argument string of each method call is gathered from the
PC and decorated with additional parameters. The originalprint

method of the classConcreteOutput is invoked with the extended
parameter object. The decoration is applied or omitted based on
properties of the control flow.

Advantages Since single methods, likeprint, are decorated, non
decorated methods of theConcreteOutput class stay unaf-
fected.
Clients of the classConcreteOutput, e.g., themain method,
are not affected, if a decoration is applied.
No virtual methods are necessary, i.e., performance and re-
source consumption are improved.

Disadvantages We did not observe specific disadvantages for that
implementation.

FOP solution. In our FOP implentation we extend the method
ConcreteOutput.print using method extensions. This method
extension augments the parameter string to print.

Advantages The advantages of the AOP implementation hold for
the FOP implementation.

Disadvantages The decoration is applied statically, i.e., every call
to the method invokes the decoration unaffected by the calling
object or the dynamic control flow.

9 If the decorators would be subclasses of the decorated printer class (not
depicted).
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Figure 46. FOP implementation of the Decorator pattern.

Criteria OOP AOP FOP
Cohesion 0 0 +
Variability 0 + +

Table 8. Evaluation of the pattern Decorator

4.8.3 Discussion

Cohesion. In the OOP implementation the decorating code is
scattered across the classesOutputDecorator, StarDecorator,
andBracketDecorator. In the AOP implementation the decora-
tion code is scattered across the aspects. In the FOP implementation
the decoration code is merged into the feature module DECORA-
TION.

Variability. In the OOP implementation classes that should be
decorated are restricted to implement an interface, e.g.,Output,
or to bind its methods dynamically. The AOP and FOP approaches
allow to decorate every method of every class although this method
might not be bound dynamically.

4.8.4 Summary

In the OOP implementation the decorating class has to implement
every method of the decorated object thus methods that are not aug-
mented with statements but forwarded only decrease performance.
In the AOP and FOP implementation no primitive forwarding meth-
ods are needed at all which improves the performance.

In the OOP implementation decorator objects can be exchanged
at runtime. In AOP the decoration of methods can be applied based
on dynamic properties of the control flow. FOP only provides the
static application of decorations.

An overview is given in Table 8.

4.9 The Facade Design Pattern

4.9.1 Intention

Provide a unified interface to a set of interfaces in a subsys-
tem. Facade defines a higher-level interface that makes the
subsystem easier to use [13].

4.9.2 Implementation

OOP solution. The pattern is applied to hide the subsystem of
classes (Decoration, RegularScreen, andStringTransformer)
that is used to perform different operations that transform a string.
Instead, the facade object is invoked. The operation is implemented
in the methodOutputFacade.printFancy, which invokes the
subsystem.

Advantages The interaction of a set of classes is modularized
into theOutputFacade object and thus the complexity of the
invoking classes decreases.

Disadvantages The pattern does not prevent direct access to the
subsystem components.
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Figure 47. OOP implementation of the Facade pattern.
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Figure 48. AOP implementation of the Facade pattern.
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Figure 49. FOP implementation of the Facade pattern.

AOP solution. The aspectFacadePolicyEnforcement restricts
the access to the subsystem that performs the string transformation.
If classes of the subsystem are invoked by classes other than the
OutputFacade class, a compiler warning is given.

Advantages The advantages of the OOP implementation hold for
the AOP implementation. The compiler warning introduced by
the aspect supports the development of loosely coupled classes
but does not imply that.

Disadvantages We did not observe obvious disadvantages of the
AOP implementation

FOP solution. We transfered the OOP implementation into a fea-
ture module. That is, the methodprintFancy, invokes the subsys-
tem classesDecoration, RegularScreen, and StringTrans-
former to perform an operation.

Advantages The advantages of the OOP implementation hold for
the FOP implementation.

Disadvantages The pattern does not prevent the client classes
which use the subsystem to directly invoke methods of the
subsystem classes.

4.9.3 Discussion

Cohesion. The OOP, AOP, and FOP implementations are equiva-
lent with respect to cohesion.

Criteria OOP AOP FOP
Cohesion 0 0 0
Variability 0 0 0

Table 9. Evaluation of the pattern Facade
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Figure 50. OOP implementation of the Factory Method pattern.

Variability. The OOP, AOP, and FOP implementations are equiv-
alent regarding the variability.10

4.9.4 Summary

A summary is given in Table 9.

4.10 The Factory Method Design Pattern

4.10.1 Intention

Define an interface for creating an object, but let subclasses
decide which class to instantiate. Factory Method lets a class
defer instantiation to subclasses [13].

4.10.2 Implementation

OOP solution. The pattern is applied to create a frame that in-
cludes a variant graphical object, e.g., of typeJButton or JLabel.
The type of the element is determined by the methodsgetTitle

and createComponent, i.e., these methods create the graphical
object that is put on the frame. These object creating methods are
used by the methodGUIComponentCreator.showFrame that de-
fines the abstract algorithm. The implementations of these methods
can vary depending on the instantiated class, e.g.,ButtonCreator.
Subsequently we refer to the methodshowframe asabstract algo-
rithm method. The methods creating the graphical objects are called
factory methods.

Advantages An algorithm can be applied to elements of a variety
of types.

Disadvantages Clients of the factory method classGUICompo-
nentCreator are closely coupled to the implementation of
the factory methods because the clients select the implemen-
tations by instantiating the respective subclass of the class
GUICompoenentCreator. The different graphical elements to
be put onto the frame have to implement the common interface
JComponent.
If the showFrame method should be exchanged or a new
abstract algorithm method should be introduced, either the
classGUIComponentCreator has to be replicated or changed
invasively. Both demand for replication of the subclasses
ButtonCreator andLabelCreator.

10The AOP compiler warning supports the developement of looselycou-
pled classes, which can be composed variable. Nevertheless the aspect does
not introduce additional flexibility.
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AOP solution. In the AOP implementation the variant abstract al-
gorithm methodshowFrame is transfered into the aspectCreator-

Implementation that introduces it on demand. The aspectAlter-

nateLabelCreationImplementation overrides the factory method
createComponent of theLabelCreator class.

Advantages The advantages of the OOP implementation hold for
the AOP implementation. If the abstract algorithm method
showFrame should be exchanged, no subclasses have to be
replicated since the inherited class is not exchanged.

Disadvantages Modules implementing different variants of the
software are not separated from modules implementing essen-
tial issues of the implementation.

FOP solution. We present two implementation approaches for
that pattern: solution A is close to the AOP implementation,
see Figure 52. We detach the variant abstract algorithm method
showFrame into the feature module CREATORIMPLEMENTATION.
The method extensionAlternateLabelCreatorImplementa-
tion.LabelCreator.createComponent overrides the method
Base.LabelCreator.createComponent.
Solution B (Fig. 53) allows to compose the abstract algorithm
methods with the template methods statically. That is, the graphical
elements of every frame may vary at compile time but are invariant
at runtime.

Advantages The advantages of the OOP and AOP implementa-
tions hold for the FOP implementation.

Solution A modularize variant extensions of the essential code
cohesively in the feature moduleFACTORYEXTENSION.

Solution B reduces the number of methods that are dynamically
bound because there are no subclasses. This improves perfor-
mance and resource consumption.

Disadvantages We did not observe disadvantages of the FOP im-
plementation A. In solution B the different factory methods,
e.g.,createComponent, can not vary at runtime.

4.10.3 Discussion

Cohesion. In the OOP implementation variant implementations
of theshowFrame method are coupled with the essentialGUICom-

ponentCreator method declarations (e.g.,createComponent
andgetTitle). The AOP implementation detaches variant exten-
sions of the essentialGUIComponentCreator methods but scatters
different extensions across the aspectsCreatorImplementation

andAlternateLabelImplementation. In the FOP implementa-
tion the variant extensions of theGUIComponentCreator class are
merged in the feature moduleFACTORYEXTENSION.

Variability. In the OOP implementation the variation of the ab-
stract algorithm methodshowFrame causes either code replication
or invasive changes. In the AOP implementation the abstract algo-
rithm method can be exchanged flexible by exchanging the aspect,
e.g.,CreatorImplementation, to be applied – code replication
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createComponent()
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getTitle()

createComponent()

GUIComponentCreator

showFrame()

LabelCreator
createComponent()

Creator−
lastFrameLocation:PointImplementation

AlternateLabelCreator
Implementation

factory
Extension

Figure 52. FOP implementation of the Factory Method pattern.
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Figure 53. Alternative FOP implementation of the Factory
Method pattern.

Criteria OOP AOP FOP
Cohesion - 0 +
Variability 0 + +

Table 10. Evaluation of the pattern Factory Method

is prevented. The FOP implementation allows to exchange the ab-
stract algorithm method without code replication by exchanging the
mixin classes, i.e., the feature modules.

4.10.4 Summary

To override methods of final classes we advice the usage of OOP
inheritance if applicable instead of replacing the method using
around advice.

4.11 The Flyweight Design Pattern

4.11.1 Intention

Using sharing to support large numbers of fine-grained ob-
jects efficiently [13].

4.11.2 Implementation

OOP solution. Hannemann et al. applied the pattern to store a
set of characters. To improve the resource consumption they only
store the extracted property of the type of characters and omit the
property of capitalization. Furthermore, whitespaces are stored by
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Figure 55. AOP implementation of the Flyweight pattern.

an additional class.
A pool of character objects (of typeCharacterFlyweight,
Fig. 56) and whitespace objects (of typeWhitespaceFlyweight)
that are shared is stored in a hashmap of the classPrintableFly-

weightFactory. To reuse the character objects, the omitted prop-
erty of capitalization has to be defined as parameter for the object.

Advantages The resource consumption of multiple character ob-
jects can be reduced by reusing one shared state variable.

Disadvantages Flyweights may introduce performance penalties
due to hashmap evaluation and parameter evaluation.

AOP solution. The AOP implementation is similar to the OOP
implementation but manages the flyweight pool, i.e., the hashmap,
inside the aspectsFlyweightProtocol and FlyweightImple-
mentation. The AOP implementation attend the difference be-
tween the usage ofFlyweight objects that are stored in the
hashmap and ofPrintableFlyweight objects that are returned
to a client The flyweight objects are assigned to the interface by the
aspect. The character using methodmain uses flyweight objects by
manipulating theFlyweightImplementation aspect which acts
as a singleton.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.

Disadvantages The empty interface introduced by the aspect en-
forces the implementation of type casts.
The implementation may introduce performance penalties due
to hashmap and parameter evaluation.

FOP solution. We present two FOP solutions: solution A, that
is depicted in Figure 56, is close to the AOP implementation. The
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Figure 57. Simplified FOP implementation of the Flyweight pat-
tern.

Criteria OOP AOP FOP
Cohesion + 0 +
Variability 0 + +

Table 11. Evaluation of the pattern Flyweight

shared character flyweight objects are stored in a hashmap object
of the singleton classFlyweightprotocol. That singleton class
is manipulated by the clients, e.g., themain method, to retrieve
flyweight objects.
Solution B reduces the number of classes and feature modules
by omitting theFlyweight interface, see Figure 57. Hence, the
hashmap stores flyweight objects using the static type object (as
it is done anyway in the hashmap). Type casts are applied to turn
these objects (of typeObject) into Flyweight objects. (The type
casts has been applied in solution A too, thusno additionaltype
casts are introduced.)

Advantages The advantages of the OOP and AOP implementa-
tions hold for the FOP implemenation.

Disadvantages In solution A the empty interfaceFlyweight in-
troduced by the feature moduleFLYWEIGHTPROTOCOL de-
mands for type casts, that are error prone.

4.11.3 Discussion

Cohesion. In the OOP implementation the creation ofPrinta-

bleFlyweight objects is merged in one class. In the AOP imple-
mentation the creation ofPrintableFlyweight objects is scat-
tered across the aspects. The FOP implementation merges the code
creatingPrintableFlyweight objects in the feature moduleFLY-
WEIGHTPROTOCOL.

Variability. In the OOP implementation the classes to be used as
flyweights are restricted to those that are subtype of the interface
PrintableFlyweight. In the AOP and FOP implementations ev-
ery class can be used to create flyweight objects since the sub-
type declaration regarding a uniform interfaceFlyweight is intro-
duced subsequently (usingdeclare parents statements in AOP
and mixins in FOP).

4.11.4 Summary

A summary is given in Table 11.
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Figure 56. FOP implementation of the Flyweight pattern.

4.12 The Interpreter Design Pattern

4.12.1 Intention

Given a language, define a representation for its grammar
along with an interpreter that uses the representation to
interpret sentences in the language [13].

4.12.2 Implementation

OOP solution. The pattern is applied to evaluate boolean ex-
pressions (BE). Each operator of the language, e.g.,AND, OR,
and NOT, is implemented by a class, e.g.,AndExpression,
OrExpression, andNotExpression, see Figure 58. These oper-
ator classes are used to compose expressions of boolean variables
and constants. The composed BE are evaluated by assigning differ-
ent values to the boolean variables. The boolean constants ”true”
or ”false” are coded in the classBooleanConstant; the boolean
variables are implemented by the classVariableExpression.
The classes of the boolean operators, e.g.,AndExpression, and
the boolean constant and variable classes (BooleanConstant and
VariableExpression) can vary with respect to the common in-
terfaceBooleanExpression. Consequently, a boolean operator
can compose boolean constants, variables or nested boolean ex-
pressions including further operators, i.e., nested and complex BE
can be composed. The assignement of values to the boolean vari-
ables is done using the singleton classVariableContext and its
hasmap field respectively.

Advantages The language of boolean expressions is easy to ex-
tend, e.g., a new operatorXORcould be implemented in a sub-
class of theBooleanExpression interface.

Disadvantages Recursive methods, e.g.,evaluate, to perform on
BE are scattered across the interfaceBooleanExpression and
all subclasses, e.g.,AndExpression. Classes that should be
used to build and analyze boolean expressions, e.g.,AndExpres-

sion, are restricted to those providing the methodsevaluate,
replace, and copy and that are subtype of the interface
BooleanExpression.

AOP solution. In the AOP implementation recursive methods to
be applied on the BE, e.g.,evaluate, are merged in the aspect
BooleanInterpretation. The aspect distributes the methods to
the BE-classes using ITD.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.

Disadvantages The different ITD of the BE methods, e.g.,eval-
uate, are tangled within the aspect, i.e., altering the ITD of one

class (e.g.,AndExpression.evaluate) causes code replica-
tion for the ITD of the other classes (e.g.,OrExpression.eval-

uate).
The implementation does not work without the aspect.

FOP solution. Our FOP implementation is close to the AOP
implementation (Fig. 60). The recursive methods, e.g.,evaluate,
of the BooleanExpression subclasses are transfered into mixin
classes which are merged in the feature moduleINTERPRETER.

Advantages The advantages of the OOP and AOP implementation
hold for the FOP implementation.

Disadvantages The mixin of one method, e.g.,interpreter.-
AndExpression.evaluate, can not vary with respect to other
mixins, e.g.,interpreter.OrExpression.evaluate. The
feature moduleBASE does not work without the feature module
INTERPRETER.

4.12.3 Discussion

Cohesion. To evaluate the cohesion of the different implementa-
tions, we have to consider two issues:

• OOP scatters the implementation of recursive methods to be
applied on the BE, e.g., the evaluation of boolean expressions
(evaluate), across different classes, e.g.,AndExpression,
and couples the code within these classes to the BE specific
code. The AOP implementation merges the recursive methods
of the BE of different classes into the aspectBooleanInter-

pretation but does not separate the variant modules from the
modules that are not variant. In the FOP implementation the re-
cursive methods are separated from the code specific to each op-
eration into mixin classes, e.g.,interpreter.AndExpression,
and all mixin classes are merged in the feature moduleINTER-
PRETER.

• The OOP implementation merges the methods associated to
one boolean operator, boolean variable and boolean constant
respectively in classes. The AOP implementation scatters the
recursive methods regarding one boolean operator, e.g.,AND,
across the respective classes, e.g.,AndExpression, and the
aspectBooleanImplementation. The FOP implementation
as the AOP implementation scatters the code implementing one
boolean operator, e.g.,AND, across the respective class, e.g.,
AndExpression, and the feature moduleINTERPRETER.

Variability. We have to consider two issues:

• In the OOP implementation of recursive methods, likeeval-

uate, can vary with respect to the operator classes, theVaria-
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Figure 60. FOP implementation of the Interpreter pattern.

bleExpression class, and theBooleanConstant class. In
the AOP and FOP implementation the recursive methods,
i.e., the ITD and mixin associated to these methods, like
evaluate, can be exchanged by exchanging the applied aspect
(BooleanInterpretation) and feature module (INTERPRETER)
respectively.

• In the OOP implementation the implementations of recursive
methods, e.g.,evaluate, can vary for each class. In the AOP
and FOP implementation, the method specific ITD and mixins
are tangled within the aspectBooleanInterpretation and
the feature moduleINTERPRETERrespectively and thus they
can not be exchanged.

In summary the implementations are equivalent regarding the vari-
ability.

4.12.4 Summary

A summary is given in Table 12.

Criteria OOP AOP FOP
Cohesion 0 0 +
Variability 0 0 0

Table 12. Evaluation of the pattern Interpreter

4.13 The Iterator Design Pattern

4.13.1 Intention

Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation
[13].

4.13.2 Implementation

OOP solution. Hannemann et al. applied the pattern to traverse
a list in different ways, e.g., forward or reverse traversation. The
traversation strategies, e.g., reverse traversation through the list,
are aniterator class, e.g.,ReverseIterator. That is, the iterator
traverses elements ofOpenList list objects.

Advantages Different traversation strategies for a list object, e.g.,
forward and backward traversation, can be exchanged without
affecting the list classes.
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Disadvantages The ReverseIterator object only can invoke
public members of the classOpenList to taverse theOpenList
objects; if this interface is restricted the possibilities for the
iterator are restricted.
TheOpenList class is closely coupled to theReverseItera-
tor class due to the return type of the methodOpenList.-

createReverseIterator.

AOP solution. In the AOP implementation the method of the
OpenList class that creates iterator objects, i.e.,OpenList.cre-

ateReverseIterator, is transfered into the aspectOpenList-
Iteration (Fig.62). Furthermore, the iterator class (Reverse-

Iterator) is encapsulated inside this aspect.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
TheOpenList class is decoupled from its iterator classReverse-

Iterator because the methodcreateReverseIterator is
separated from the list class.

Disadvantages There are no obvious disadvantages of the AOP
implementation we observed.

FOP solution. Our FOP implementation is close to the AOP
implementation, i.e., the method that creates the iterator objects
for anOpenList object (createReverseIterator) is transfered
into the mixin classOpenList of the feature moduleITERATOR.
The methodcreateReverseIteratorFor provides an alternative
way to create iterator objects for a list object.
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Figure 63. FOP implementation of the Iterator pattern.

Criteria OOP AOP FOP
Cohesion - 0 +
Variability 0 + +

Table 13. Evaluation of the pattern Iterator

Advantages The advantages of the OOP and FOP implementa-
tions hold for the FOP implementation too.

Disadvantages The FOP implementation of the pattern depicts no
obvious disadvantages.

4.13.3 Discussion

Cohesion. In the OOP implementation theOpenlist class is
closely coupled to the variantReverseIterator class due to the
return type of thecreateReverseIterator method.
In the AOP implementation theOpenList class is not coupled to
theReverseIterator class because thecreateReverseItera-
tor method is introduced subsequently. But the AOP implementa-
tion does not separate variant aspects from essential classes.
In the FOP implementation theOpenList class is not coupled to
theReverseIterator class because the methodcreateReverse-
Iterator is introduced subsequently. The variant mixin classes
of the feature moduleITERATOR, e.g.,iterator.OpenList, are
separated from the essential classes (feature moduleBASE).

Variability. In the OOP implementation classes of iterator objects
that can be created by theOpenList objects are restricted to be
subtype of theReverseIterator class due to the return-type
of the methodcreateReverseIterator. In the AOP and FOP
implementations iterator objects of different types can be created
by theOpenList objects.

4.13.4 Summary

A summary is given in Table 13.

4.14 The Mediator Design Pattern

4.14.1 Intention

Define an object that encapsulate how a set of objects inter-
act. Mediators promotes loose coupling by keeping objects
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Figure 65. Mediator pattern by Gamma et al.

from referring to each other explicitly, and it lets you vary
their interaction independently [13].

4.14.2 Implementation

OOP solution. In the OOP implementation a mediator class
(Label, Fig. 64) is used by event originator objects (of type
Button) to update associated colleague objects, e.g., of type
Label. That is, after theButton object is clicked, the method
colleagueChanged of the mediator objectLabel is invoked
which updates the colleage object (i.e., it updates itself in this
implementation of Hannemann et al.)11

Advantages The colleague classes, e.g.,Button or Label, can
vary with respect to theGUIColleage interface because the
communication is implemented in the mediator classLabel.
That is, the colleague classes are decoupled and thus the
Button object is not aware of the type of colleague it is up-
dating. For that no other colleague, e.g.,Label, class has to
change.
The way objects interact is explicitely kept in the concrete me-
diator classes.

Disadvantages The mediator class itself gets complex and mono-
lithic because the it merges the communication code between
different types of objects.
In the implementation presented by Hannemann et al. the medi-
ator code is tangled with the code of the colleague classLabel

thus preventing variation of the mediator and colleague.
TheButton objects of classButton depend on aGUIMediator
interface an object due to the member field that is declared and
used in theButton class.

AOP solution. In the AOP implementation the update of col-
leage objects, e.g., of typeLabel, is merged into the aspect
method MediatorProtocol.notifyMediator, see Figure 66.
This method is invoked by advice after the button has been clicked.
This method notifies the colleagues associated in a hashmap of the
aspectMediatorProtocol.

11The implementation presented by Hannemann et al. differs from the
approach of Gamma et al. [13]. The approach of Gamma et al. is depicted
in Figure 65.
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Figure 66. AOP implementation of the Mediator pattern.

Advantages The advantages of the OOP implementation hold for
this AOP implementation. Classes to act as colleague, e.g.,
Button, do not have to be subtype of a specific interface
Colleague but are extended subsequently to do so.
If the Button class should not invoke the mediator object this
can be achieved by omitting the mediator aspect.

Disadvantages The update code is restricted for updatingLabel

object only.

FOP solution. The FOP solution is close to the AOP implemen-
tation (Fig. 67).
Colleague objects are associated toButton objects in a hashmap
of the singleton classMediatorProtocol. The notification of col-
leagues is applied by extending theMyActionListener.action-
Performed method. (FOP prevents the extension of anonymous
classes thus we embodied theActionListener class in the
MyActionListener class.)

Advantages The FOP implementation overtakes the advantages of
the OOP and FOP implementations.

Disadvantages The disadvantages of the AOP implementation
hold for the FOP implementation.

4.14.3 Discussion

Cohesion. Two aspects have to be considered for the evaluation
of cohesion:

• In Hannemanns implementation of the Mediator pattern the
communication code in the mediator classLabel is closely
coupled to the colleague code of the classLabel. In the AOP
and FOP implementations variant communication code, e.g.,
notifyMediator, i.e,colleagueChanged, is separated from
the communicating classes, e.g.,Button andLabel.

• In the OOP implementation the code for invoking the colleague
is scattered across all classes. In the AOP implementation the
objects code for notifying colleagues is scattered across the as-
pects. In the FOP implementation the code of notifying col-
leagues is merged into the feature moduleMEDIATOR.

Variability. In the OOP implementation the classButton de-
pends on the classesGUIMediator andLabel due fields and meth-
ods.
In the AOP and FOP implementations theButton class does not
depend on theGUIMediator andLabel classes because the medi-
ator invocation is introduced subsequently.

4.14.4 Summary

A summary is given in Table 14.
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Criteria OOP AOP FOP
Cohesion - 0 +
Variability 0 + +

Table 14. Evaluation of the pattern Mediator

4.15 The Memento Design Pattern

4.15.1 Intention

Without violating encapsulation, capture and externalize an
object’s internal state so that the object can be restored to
this state later [13].

4.15.2 Implementation

OOP solution. The design pattern Memento is applied to store
the field-values of aCounter object, see Figure 68. TheCounter
object creates an object of typeCounterMemento that contains
the current values of the fields of the respectiveCounter object
(in the methodcreateMementoFor). The safed field-values of the
Counter object can be restored by transferring the values back
from theCounterMemento object to theCounter object (method
setMemento). If the field-values of theCounter object have been
changed in between, e.g., by the methodincrement, the fields are
overriden by the values stored in theCounterMemento object by
transfering the member values back to theCounter object.

Advantages The Counter object manipulates its corresponding
CounterMemento object on its own and thus the manipulating
main method is not aware of, i.e., are loosly coupled to different
memento types and the internal representation of the object to
store.

Disadvantages The interface of theCounterMemento object that
is present to theCounter class is also available for any other
object. Hence, the state can be manipulated from other classes
and thus the encapsulation of the internal state (field-values)
is broken (using C++ thefriend statement can solve that
problem).

AOP solution. The aspectCounterMemento is used to extract
(methodcreateMementoFor) the counters state and to restore
(methodsetMemento) the counters state.

Advantages The field-values of an object can be saved by loosely
coupled objects that do not know internals of the class to store.

Disadvantages The aspectCounterMemento is closely coupled to
theCounter class because it determines the type of the object
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Counter calls

getState()

setState()

CounterMemento stores

Figure 68. OOP implementation of the Memento pattern.
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Figure 69. AOP implementation of the Memento pattern.

1 p u b l i c v o i d setMemento(Originator o, Memento m) {
2 i f (o instanceof Counter) {
3 Integer integer = (Integer) m.getState ();
4 (( Counter)o).currentValue = integer.intValue ();
5 } e l s e {
6 throw new MementoException("Invalid originator");
7 }
8 }

Figure 70. Resetting the field-values of a class to saved values in
the aspectCounterMemento.

to store due to type casts. Thus the aspect is not reusable with
other classes.

FOP solution. The creation and resetting ofMemento objects is
done by the singleton classCounterMemento, i.e., the methods
createMementoFor andsetMemento (Fig. 71). To enhance ex-
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Figure 71. FOP implementation of the Memento pattern.

Criteria OOP AOP FOP
Cohesion - 0 +
Variability 0 + +

Table 15. Evaluation of the pattern Memento

tensibility we extract the anonymous classMemento into the top-
level classMyMemento.

Advantages The advantages of the AOP implementation hold for
the FOP implementation.

Disadvantages The disadvantges of the AOP implementation hold
for the FOP implementation.

4.15.3 Discussion

Cohesion. In the OOP implementation the variant methods stor-
ing the field-values ofCounter objects into the memento objects
are tangled within theCounter class.
In the AOP implementation the variant methods of storing the field-
values of objects (e.g.,createMementoFor) are separated from the
code that is essential, e.g.,Counter.increment, but methods that
store and reset objects, e.g., of typeCounter, are scattered across
the aspectsMementoProtocol, CounterMemento and the inter-
faceMemento.
In the FOP implementation the variant methods that store and re-
set field-values of objects are separated from the essential code of
stored objects (e.g.,Counter.increment) and the variant code is
merged into one feature moduleMEMENTO.

Variability. In the OOP implementation theCounter class is tan-
gled to theCounterMemento class due tocreateMementomethod
thus theCounter class depends on the classCounterMemento,
i.e., the modules can not be composed in a flexible way.
In the AOP and FOP implementations theCounter class does not
depend on the corresponding memento class (Memento) because
the memento object that stores the field-values of aCounter object
is created by the aspectCounterMemento (AOP) and the singleton
classCounterMemento (FOP) respectively.

4.15.4 Summary

The aspectMementoProtocol only defines an empty interface
(Originator). The only mechanism that is not OOP is one
declare parents statement in theCounterMemento aspect and
aspect methods to be defined by the subaspects.
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Figure 72. OOP implementation of the Observer pattern.

4.16 The Observer Design Pattern

4.16.1 Intention

Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are noti-
fied and updated automatically [13].

4.16.2 Implementation

OOP solution. The pattern is used to updateScreen objects
(the observers) after the position or the color of aPoint object
(the subject) has been changed (e.g., methodssetX, setColor;
Fig. 72). The method that changes the state of the subject object
(of typePoint), e.g.,setColor, additionally invokes the method
notifyObservers. The methodScreen.refresh extracts the
observers of a subject object from a hashset and invokes the
methodrefresh of the oberving objects. Thisrefresh method,
e.g.,Screen.refresh, updates the observer object (e.g., of type
Screen).
The observed objects, e.g., of typePoint, of anChangeObserver
object can be exchanged with respect to theChangeSubject inter-
face. The observing objects, e.g., of typeScreen, of an observed
object can be exchanged with respect to theChangeObserver in-
terface.

Advantages Different ChangeObserver objects, e.g., of type
Screen, can be updated without changing the subject class,
e.g.,Point and thus the class is decoupled from the type and
the number of observers to update.

Disadvantages If every observer object (e.g., of typeScreen) is
invoked every time the subject object changes (e.g., of type
Point) the performance decreases due to the notification over-
head.
Observers, e.g.,Screen objects, can not be updated specific to
their types, since that concrete type is not known to the subject
class.
If the set of events of a subject object that are triggered to
the observer objects should change code replication or invasive
changes are necessary.
If the subject objects shall not update observer objects either
code replication or invasive changes are necessary.

AOP solution. In the AOP implementation code of notifying
observer objects is merged into the aspectObserverProtocol

(Fig. 73). The inheriting aspectsColorObserver, Coordinate-
Observer, andScreenObserver define the join points when to
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update observer objects by PCA.
The woven advice invokes the aspect method that updates the ob-
servers (updateObserver). This method uses a hashmap to re-
trieve the observers per subject and invoke theirupdate method.
The aspect methodaddObserver is used to assign subject objects
to observer objects.

Advantages Changes to the code that updates observer objects
(e.g.,notifyObservers) do not demand for code replication
of the observed classes, e.g.,Point.

Disadvantages Introducing another observer type either causes
code replication or invasive changes because theupdateObser-

ver methods rely that the observer type isScreen.

FOP solution. We present 2 FOP approaches for that pattern:
soluation A (Fig. 74) is close to the AOP implementation. The
methods that shall update observer objects, e.g.,Point.setColor,
are extended subsequently in the feature module OBSERVERto in-
voke theupdateObserver method of the singleton classes, e.g.,
ColorObserver. These methods of the singleton classes per-
form the updates on the observer objects that are retrieved using
a hashmap fieldobservers of the singleton classes. Each single-
ton class updates observer objects specific to an observed issue
(e.g., the classColorObserver updates observers when the color
of the subject changes).
Solution B (Fig. 74) can be applied if all observers of aPoint
object shall be notified after a change to the subject object (of type
Point) appeared although the specific observer may not be inter-
ested in one specific notification issue. Therefore, the notification
has to be evaluated inside thenotify method of each observer,
e.g.,Screen.notify.

Advantages The Advantages of the AOP implementation hold for
the FOP implementation.
Solution B improves performance because no hashmap has to
be evaluated to get the list observers for an observedPoint

object.

Disadvantages Solution A may cause code replication for the
method extensions of the observed class that invoke theupdate-

Observermethod. The extension by observer types demand for
updating theupdateObserver methods, since they rely on the
typeScreen to be the observer type due to type casts.
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Figure 75. Alternative FOP implementation of the Observer pat-
tern.

Criteria OOP AOP FOP
Cohesion - 0 +
Variability 0 + +

Table 16. Evaluation of the pattern Observer

4.16.3 Discussion

Cohesion. In the OOP implementation the code that updates
observer objects is scattered across the classesPoint, Screen,
ChangeObserver, andChangeSubject and tangled with the code
of the original concern of the respective classes.
In the AOP implementation the variant code of updating observer
objects is detached into the aspects but scattered across the aspects
ObserverProtocol, ColorObserver, CoordinateObserver,
andScreenObserver.
In the FOP implementation the variant code of updating observer
objects, e.g., of typeScreen, is detached and merged into the fea-
ture module OBSERVER.

Variability. In the OOP implementation the classes depend on
each other, i.e., the classesScreen and Point depend on the
ChangeObserver and ChangeSubject interfaces, thus building
a monolithic system.
In the AOP and FOP implementations the update of observing
objects can be omitted. Hence, thePoint and Screen class do
not depend on interfaces, likeSubject or Observer, but can be
omitted and exchanged.

4.16.4 Summary

A summary is given in Table 16.
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Figure 74. FOP implementation of the Observer pattern.

4.17 The Prototype Design Pattern

4.17.1 Intention

Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype
[13].

4.17.2 Implementation

OOP solution. The prototype design pattern has been applied to
replicate objects of abstract implementation classes, i.e.,String-

PrototypeA and StringPrototypeB, without knowing the in-
ternal representations of the respective classes. For that, the both
classes have to implement the interfaceClonable and thus pro-
vide a method to copy its field-values to another object of the same
class.

Advantages The code performing the replication of objects can
vary for each variant class. Different objects can be replicated
using the common interfaceCloneable, i.e., clients, that repli-
cate different objects do not have to know about the internal
representations of the replicated objects.

Disadvantages The cloning of objects can hamper performance
and resource consumption compared to object creation.
The code that clones objects of different types is scattered
across the classes to clone.
If the classesStringPrototypeA and StringPrototypeB

should not be able to replicate itself, i.e., should not implement
the interfaceClonable, the classes have to be changed inva-
sively or replicated.

AOP solution. The AOP implementation merges the code for
cloning different classes into the aspectsPrototypeProtocol and
StringPrototypes. That methodPrototypeProtocol.clone-
Object replicates its parameter object or invokes the method
createCloneFor of the aspectStringPrototypes, which repli-
cates the object.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
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Figure 76. OOP implementation of the Prototype pattern.
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Figure 77. AOP implementation of the Prototype pattern.

The code of replicating objects can be manipulated subse-
quently by replacing the aspects – that does not replicate the
classes (StringPrototypeA andStringPrototypeB) of the
objects to copy. Clients, that replicate different objects do not
have to know about the internal representations of the objects
to replicate.

Disadvantages The code replicating the classStringPrototypeA
is tangled with the code of replicating the classStringProto-

typeB thus decreasing variability.

FOP solution. The FOP implementation is close to the AOP im-
plementation, see Figure 78. We merged the code replicating differ-
ent objects into the methodPrototypeProtocol.cloneObject.



Criteria OOP AOP FOP
Cohesion 0 0 +
Variability + 0 0

Table 17. Evaluation of the pattern Prototype

The methodscreateCloneFor andcloneObject replicate their
parameter objects.

Advantages The advantages of the AOP implementation hold for
the FOP implementation.

Disadvantages The code cloning different types of objects is tan-
gled within the methodPrototypeProtocol.cloneObject
thus the code performing the replication of objects of different
types can not vary for each type without code replication.

4.17.3 Discussion

Cohesion. We have to consider 2 issues:

• In the OOP implementation the code that replicates objects is
scattered across the classesCloneable, StringPrototypeA,
andStringPrototypeB, and closely coupled to the main con-
cerns of these classes.
In the AOP implementation the code of replicating objects of
different types is is scattered across the aspects and the vari-
ant aspects are not separated from the classes that are essen-
tial, e.g.,StringPrototypeA. In the FOP implementation the
single feature module PROTOTYPINGmerges the variant mixin
classes that implement the replication of objects.

• In the OOP implementation the code of the classesStringPro-

totypeA andStringPrototypeB is merged in the respective
classes. In the AOP implementation the code of these classes is
scattered across the aspects and coupled within. In the FOP im-
plementation the code of the classesStringPrototypeA and
StringPrototypeB is scattered across the feature modules
BASE and PROTOTYPING.

Variability. In the OOP implementation the code replicating an
object of a specific class (theclone method) can be exchanged
with respect to the code replicating objects of other classes. In
the AOP and FOP implementations the code replicating one class
is tangled to the code replicating another class inside the method
PrototypProtocol.cloneObject. Hence, if the code replicat-
ing objects of one class should be exchanged, invasive changes or
code replication are necessary.

4.17.4 Summary

A summary of the evaluation is depicted in Figure 17.

4.18 The Proxy Design Pattern

4.18.1 Intention

Provide a surrogate or placeholder for another object to
control access to it [13].

4.18.2 Implementation

OOP solution. The clients of proxy classes each refer to an ob-
ject of typeOutputImplementation (Fig. 79) to invoke differ-
ent methods. This referenced object and its methods respectively
(e.g., safeRequest) are shielded by the Proxy objects (of the
typeRequestBlocker andRequestCounter) from access. If the
Proxy classes are instantiated instead of the classOutputImple-

mentation, theRequestBlocker andRequestCounter objects
intercept and analyze requests to theOutputImplementation ob-
jects. Since the Proxy objects implement the same interface as the
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unsafeRequest()
regularRequest()
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unsafeRequest()
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safeRequest()
realSubject:OutputSubject

regularRequest()
safeRequest()

OutputImplementation
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OutputSubject
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unsafeRequest()
regularRequest()
safeRequest()

unsafeRequest()

Figure 79. OOP implementation of the Proxy design pattern.

1 p r o t e c t e d p o i n t c u t requests (): c a l l (*
OutputImplementation.safeRequest (..));

2 p r i v a t e p o i n t c u t requestsByCaller(Object
caller):requests () && t h i s (caller);

3 Object around(Object caller , Subject subject):
requestsByCaller(caller) && t a r g e t (subject) {

4 i f (! isProxyProtected(caller , subject ,
thisJoinPoint) )

5 r e t u r n p r o c e e d (caller , subject);
6 r e t u r n handleProxyProtection(caller , subject ,

thisJoinPoint);
7 }

Figure 80. Caller analysis in AOP advice.

classOutputImplementation, clients (e.g., themain class) are
not affected if theOutputImplementation object is replaced by
a Proxy object of typeOutputSubject. The Proxy objects refer to
the respective shielded object by an object reference that is instan-
tiated as needed.

Advantages Costs for instantiating and manipulating the output
implementation object can be delayed until its properties are
accessed. Proxy objects of the classesRequestBlocker or
RequestCounter can be applied, omitted, and exchanged at
runtime. Proxies can hide complexity of accessing an object,
e.g., a remote object.

Disadvantages For all methods of a shielded object indirections
are introduced by the shielding Proxy objects and thus the per-
formance decreases, e.g., indirections are introduced by proxy
objects of typeRequestBlocker andRequestCounter.
Hiding methods, e.g.,OutputImplementation.safeRequest,
subsequently by introducing a new Proxy class affects the
classes that invoke methods of theOutputImplementation
object (e.g., the classmain) because the calling class have to in-
stantiate this new Proxy class instead of the classOutputImp-

lementation.
If the caller of the output implementation object has to be ana-
lyzed by the Proxy objects the calling object has to provide it-
self as a parameter. This parameter is not necessary if no Proxy
object analyzes the caller objects. Thus the caller classes, e.g.,
the classmain, are affected, if a Proxy analyzes the caller – that
causes close coupling.

AOP solution. Proxy shielding and redirection of method invoca-
tions, e.g., for the methodOutputImplementation.safeRequest,
is applied by intercepting respective methodcalls using PCA.
The caller object of a method of theOutputImplementation
object is gathered through the pointcut expressions (Fig. 80,
Lines 1–2) and is analyzed for its type by the advice of the
pointcutrequestsByCaller (Line 3–7) by invoking the method
isProxyProtected (Line 4). If the analysis in this aspect method
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Figure 81. AOP implementation of the Proxy design pattern.

succeeds the output implementation object is invoked by the aspect
(Line 5). If the methodisProxyProtected fails the call is denied
by invoking the empty methodhandleProxyProtection (Line
6).

Figure 81 depicts the implementation proposed by Hannemann
et al. The output implementation classOutputImplementation
is manipulated by the classmain. The aspectProxyProtocol in-
cludes the advice performing the analysis-dependent forwarding to
the shielded methods (Fig. 80, Lines 3–7). The analysis of the caller
object and the definition of methods to shield (pointcutrequests)
is implemented in the subaspects, e.g.,RequestBlocking.
While the aspectsRequestBlocking andRequestCounting are
simply forwarding or denying (by returning a null value) calls to the
shielded methods of theOutputImplementation object, the as-
pectRequestDelegation forwards these calls to a different class
(AlternateOutputImplementation) instead.

Advantages The advantages of the OOP implementation, e.g., de-
laying the time of instantiation of theOutputImplementation
object, hold for the AOP implementation.
The application of caller analysis and method shielding can be
applied without changes to themain class and without changes

to theOutputImplementation class.
If the call to one method of theOutputImplementation ob-
ject (e.g.,safeRequest) is analyzed, the analysis code is in-
troduced around this single method. That is, other methods of
the object (e.g.,regularRequest) stay unaffected and can be
accessed directly by themain class. This prevention of indi-
rections increases performance by omitting empty forwarding
methods.

Disadvantages There are no obvious disadvantages associated to
this pattern implementation.

FOP solution. FOP does not allow to extend method calls in
general and thus FOP implementations can not analyze the object
straightforwardly that calls methods of the shieldedOutputImple-

mentation objects, e.g., themain class. To cope with this problem,
we introduced one mixin and one method extension per shielded
method (Fig. 82), e.g., for the methodOutputImplementation.-
safeRequest we introduced one mixin and one method extension.
The mixin associated to a shielded method, e.g.,safeRequest, ex-
tends the signature of this method in the mixin classproxyProto-

col.OutputImplementation to accept the calling object as an
additional parameter – this extended method iscaller-awareand
only forwards calls to the refined caller-unaware methods of the
feature moduleBASE. Subsequently, we refine the caller-aware
methods to invoke theisProxyProtected methods and thus to
analyze the additional parameter (the caller), e.g., in the feature
moduleREQUESTBLOCKING. Hence, thesecaller-awaremethods,
that include the additional parameter, are shielded instead of the
originals.

Advantages The code to analyze callers of methods is merged into
the feature module PROXYPROTOCOL.

Disadvantages In Java access to caller unaware methods can-
not be restricted by additive changes.12 C++ allows to de-
crease the accessibility of the caller-unaware methods, e.g.,
base.OutputImplementation.safeRequest.
The class (main) that calls methods of theOutputRepresen-
tation object has to attend the caller analysis by invoking the
methods with the additional parameter, i.e., the caller-aware
methods.
Due to superimposition the namespace of different feature mod-
ules are merged and methods that are specific for one mod-
ule and shall not be overridden have to be renamed. For in-

12Overriding methods in subclasses can not decrease the visibility declared
for them by their respective overridden methods of the superclass.
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Figure 82. FOP design of the Proxy design pattern.

stance, we renamed the methodOutputImplementation.is-

ProxyProtected of the feature module REQUESTBLOCKING
intoOutputImplementation.isProxyProtectedBlocking
to prevent overriding, e.g., by the mixinrequestCounting.-
OutputImplementation.isProxyProtected.

Changing the number of parameters of methods causes a prob-
lem in extending these methods, equivalently to the constructor
problem, that has been solved for C++ in [11].

4.18.3 Discussion

Cohesion. In the OOP implementation the analysis of method
callers and the forwarding implementation are detached from
the OutputImplementation class but scattered across all proxy
classes, e.g.,RequestCounter. In the AOP implementation the
caller analysis code is scattered for different methods of the
OutputImplementation class across all aspects. In the FOP im-
plementation the code of the caller analysis of the output imple-
mentation objects is merged in one feature modulePROXYPROTO-
COL.

Variability. To evaluate the variability of the implementations, we
have to consider two aspects:

• In the OOP implementation the classOutputImplementation
depends on the Proxy interface (OutputSubject).
In the AOP implementation the classOutputImplementation
does not depend on the interfaceOutputSubject because the
method shielding is introduced additively and directly into the
class.
FOP also removes dependencies between the the classOutput-

Implementation and the interfaceOutputSubject.

• In the OOP implementation flexible caller analysis demands for
either code replication or invasive changes of themain class be-
cause it has to instantiate the proxy class, e.g.,RequestBlocker,
instead of the classOutputImplementation. The AOP im-
plementation allows to reuse themain class because the caller
analysis is applied without affecting this class invasively. FOP
needs to adapt the objects that invoke shielded methods, e.g.,

Criteria OOP AOP FOP
Cohesion 0 0 +
Variability - + 0

Table 18. Summarized evaluation of the Proxy design pattern.

OutputImplementation.safeRequest to provide an addi-
tional parameter. Hence, themain class is not reusable.

4.18.4 Summary

The OOP implementation introduces different indirections for all
methods of the class when different proxy objects shield an object.
The AOP implementation avoids indirections for methods that are
not shielded because PCA extends single methods of a class. The
FOP implementation introduces one indirection for all potentially
shielded methods of a class.

In the OOP and AOP implementations the analysis of callers
may vary at runtime, e.g., depending on the object (OOP) or de-
pending on the control flow (AOP). In FOP caller analysis is ap-
plied for all instances and calls to the shielded methods.

4.19 The Singleton Design Pattern

4.19.1 Intention

Ensure a class only has one instance, and provide a global
point of access to it [13].

4.19.2 Implementation

OOP solution. Hannemann et al. applied the Singleton pattern to
limit the number of objects of a printer class (PrinterSingleton)
instantiated at runtime. Therefore, thePrinterSingleton class
instantiates a static reference of the own type and refers to this
element subsequently every time the class should be instantiated
– the methodinstance is used to retrieve that single instance.
The subclassPrinterSubclass overrides the methodinstance
and omits the limitation regarding the count of instances, i.e., the
methods returns anewobject every time it is called.
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Advantages Multiple instances of the classPrinterSingleton
can be prevented or the count of instances can be limited.
The classPrinterSingleton merges synchronization effort.

Disadvantages If the classPrinterSingleton should not act
as a singleton, the clients (themain method) have to call the
constructor of the class instead of calling theinstance method
thus clients have to be adapted or theinstance method has to
be manipulated.

AOP solution. In the AOP implementation every call to the con-
structor of the singleton class (Printer) is intercepted by PCA
using around advice. If an object of the according class (Printer)
exists in a hashmap field of the aspectSingletonProtocol, this
object is returned by advice instead of a newly created object – the
constructor is not called. If there is no object of the class to instanti-
ate in the hashtable, an object of the respective class is created and
is stored in the hashtable to be used for subsequent requests.

Advantages The advantages of the OOP implementation are kept.
The main method is not affected whether the classPrinter

acts as a singleton or not.

Disadvantages The manipulation of one single instance by mul-
tiple clients may demand for additional synchronization code.
The performance decreases due to the evaluation of the hashtable
in the advice to find existing objects of a class.
Due to the empty interfaceSingleton several type casts are
necessary that are error prone.

FOP solution. Our FOP implementation is close to the OOP
implementation (Fig. 85). The classesPrinter andPrinterSub-
class implement a methodgetInstance that controls the cre-
ation of instances for these classes.
The methodgetInstance of the mixin classSingletonIns-
tance.Printer proves, whether an object of the classPrinter

exists (and is stored in the static reference of thePrinter class). If
so, the existing object is returned. Otherwise, an object is created
and stored in the static reference. Then this instantiated object is
returned.
ThePrinterSubclass is refined to create newPrinterSubclass
objects every time the methodgetInstance is called.

Advantages The advantages of the AOP implementation hold
for the FOP implementation but the synchronization effort is
merged into the feature module SINGLETONINSTANCE instead
of aspects.
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Figure 85. FOP implementation of the Singleton pattern.

Criteria OOP AOP FOP
Cohesion - 0 +
Variability 0 + +

Table 19. Evaluation of the pattern Singleton

Disadvantages Since decrease of accessibility of methods and
constructors is not possible in Java subsequently, the limited
view of instances has to be prepared to limit the count of ob-
jects for one class. Hence, we implemented the object creating
methodgetInstance from beginning. C++ allows to reduce
the visibility of class members by subclasses, thus the prepara-
tion of the pattern is not necessary in C++ based approaches of
FOP but changes changes affect the clients.
The application of the pattern to different classes causes code
replication of thegetInstance method and the static refer-
ence.

4.19.3 Discussion

Cohesion. In the OOP implementation the code limiting the num-
ber of instances is scattered across the classesPrinterSingleton

and PrinterSubclass. Furthermore, the essential members of
the classPrinterSingleton, i.e., the methodprint, are closely
coupled with the variant members, i.e., the methodinstance.
The AOP implementation detaches the code to limit the number
of instances from the class but scatters the code across the aspects
SingletonProtocol andSingletonInstance.
In the FOP implementation the variant code (the methodinstance)
is detached from the essential elements of the class and is merged
into the one feature module SINGLETONINSTANCE.

Variability. In the OOP approach the classPrinterSingleton
only can be used as singleton. In the AOP and FOP implementa-
tions thePrinter classes can be used as singleton classes and as
normal ”multi-object” classes.

4.19.4 Summary

The question concerning this adaptibily is, whether it is meaningful
to apply the limitation regarding the count of instances for one class
obliviously.

FOP does not allow to intercept calls to constructors inside com-
plex methods since the extension of a constructor using refinements
does not prevent the creation of an object.

4.20 The State Design Pattern

4.20.1 Intention

Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class [13].

4.20.2 Implementation

OOP solution. The pattern is applied to adapt the implemen-
tation of a queue object (of classQueue; Fig. 86) based on the
number of elements in the queue, e.g., the insertion of additional
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Figure 86. OOP implementation of the State pattern.

elements fails if the queue is full. The variant method implemen-
tations of the queue, e.g., of methodinsert, are detached into
referred classes, e.g.,QueueFull. The different classes implement-
ing methods with respect to the state of theQueue (QueueEmpty,
QueueNormal, QueueFull) can be exchanged with respect to the
interfaceQueueState.
The Queue object forwards requests (insert, getFirst, or
removeFirst) to the object representing the current state and is
referred to by theQueue object. The state object implements the
methods according to the type of the state class, e.g., state objects
of type QueueFull reject element insertion. By exchanging the
state object, theQueue object behaves differently for clients.

Additionally, the state objects, e.g., of typeStateFull, change
the state object that theQueue object refers to, thus replacing
themselve, e.g., by aQueueEmpty object.

Advantages All behavior associated with an internal state of the
queue, e.g., the queue is full, is merged inside the respective
state class, e.g.,QueueFull.
The transition between states (e.g., stateQueueFull becomes
QueueNormal after object deletion) is depicted explicitely by
the changes of the state objects.
The state classes, e.g.,QueueFull can be reused to represent
the state of other classes.

Disadvantages The code of changing the state of aQueue object is
scattered across the state classesQueueNormal, QueueEmpty,
andQueueFull.
Each state class is closely coupled to the state class that suc-
ceeds after an operation.
Changing the schedule of state classes that succeeds each other
demands either for invasive changes or code replication.

AOP solution. In the AOP implementation the code exchang-
ing the state objects of aQueue object is merged in the aspect
QueueStateAspect. The aspect advises different join points to as-
sign a new state object of a specific type to theQueue class.
An example is given Figure 87. After the methodinsert has been
invoked, state of theQueue object is updated (Lines 3–4 and 7–9)
based on the current state. If the queue was empty before insertion
(Line 2) the insertion of an element causes the state to be normal;
if the queue was filled normally (Line 5)and after the insertion the
Queue can not store additional elements (Line 6), the state of the
Queue object is set to be full (Line 9).

Advantages The transition of state objects is separated from the
state classes and thus the transition definitions can be ex-
changed without code replication or invasive changes. Hence,
the integration of a new state class is possible without manipu-
lating existing state classes.

1 a f t e r (Queue queue , QueueState qs, Object arg):
c a l l ( b o o l e a n QueueState +. insert(Object)) &&
t a r g e t (qs) && a r g s (arg) && t h i s (queue) {

2 i f (qs == empty) {
3 normal.insert(arg);
4 queue.setState(normal);
5 } e l s e i f (qs == normal) {
6 i f (normal.first == normal.last) {
7 full.items = normal.items;
8 full.first = normal.first;
9 queue.setState(full);

10 }
11 }
12 }

Figure 87. Changing the state of aQueue object by advice.
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Figure 88. AOP implementation of the State pattern.

Disadvantages Changes to the ordering of state objects causes
the replication of the aspectQueueStateAspect. The aspect
QueueStateAspect is coupled closely to theQueue class, thus
lacks reuse if the state classes are used in different situations.
Modularizing the state transitions lacks the aim of the pat-
tern to separate behavior of different states [13] because the
code specific to different states is tangled within the aspect
QueueStateAspect.

FOP solution. In the FOP implementation the transitions be-
tween states of anQueue object are implemented as extensions of
theQueue methods that may cause a change of state, i.e., methods,
like QueueState.Queue.insert, adapt the state of the current
Queue object by exchanging its assigned state object. In contrast
to the OOP and AOP implementation theQueue class is extended
to adapt itself but is not adapted by theQueuestate classes (e.g.,
QueueNormal) or the aspect (QueueStateAspect).

Advantages The advantages of the AOP implementation hold for
the FOP implementation.

Disadvantages The refinementQueueState.Queue is closely
coupled to theQueue class thus lacks reuse if the state classes
and their transitions are applied in other situations.
Modularizing the state transitions lacks the aim of the pattern to
separate behavior of different states [13]. The code specific to
different states is tangled within the feature module QUEUES-
TATE.

4.20.3 Discussion

Cohesion. We have to consider two aspects to evaluate cohesion
of these pattern implementations:
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Figure 89. FOP implementation of the State pattern.

• In the OOP implementation the transition code is scattered
across all state classes. In the AOP and FOP implementations
the transition code is modularized in the aspectQueueStateAs-

pect (AOP) and the feature module QUEUESTATE (FOP) re-
spectively.

• In the OOP implementation the code of the variant state tran-
sition is closely coupled to the state classes. In the AOP im-
plementation the variant code of state transition is detached
from the state classes but the module that implements the vari-
ant transitions is not separated from the essential classes of
Queue and QueueState. The FOP implementation separates
the variant transition code from the essential state code into the
mixin classQueueState.Queue and the variant mixin classes
are separated from the essential classes, e.g.,Queue.

Variability. We have to consider 2 aspects:

• In the OOP implementation every state class, e.g.,QueueFull,
depends on the succeeding state class, e.g.,QueueNormal.
Since this restriction holds for all state classes, no state class can
be exchanged without code representation or invasive changes.
In the AOP and FOP implementations the state classes, e.g.,
QueueFull do not depend on each other and thus can be ex-
changed.

• In the OOP implementation the definition of the transition for
every state class (e.g., stateQueueFull follows QueueNormal
after element insertion) can be exchanged without corrupting
the code associated to other classes. In the AOP and FOP
implementations the transitions between all states are tan-
gled within the aspectQueueStateAspect (AOP) and the
QueueState.Queue class (FOP) respectively and thus ex-
changing the definition regarding one state class causes code
replication or invasive changes for the definitions regarding the
other classes.

In summary the OOP, AOP, and FOP implementations are
equivalent regarding the variability in this pattern.

4.20.4 Summary

Modularizing the state transitions as in AOP and FOP lacks the aim
of the pattern to separate behavior of different states [13].

Criteria OOP AOP FOP
Cohesion - 0 +
Variability 0 0 0

Table 20. Evaluation of the pattern State

<<interface>>
calls

sort()

BubbleSort
exchange()

sort()

LinearSort

SortingStrategy
sort()show()

Sorter

exchange()

Figure 90. OOP implementation of the Strategy pattern.

4.21 The Strategy Design Pattern

4.21.1 Intention

Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it [13].

4.21.2 Implementation

OOP solution. Hannemann et al. proposed to assign different
algorithms, e.g., bubble sort or linear sort, to a sorting component
(Sorter, Fig. 90). Hence, the different algorithms are separated
from theSorter class intostrategyclasses each, e.g.,BubbleSort
andLinearSort. The strategy classes can vary with respect to the
referredSortingStrategy interface at runtime. TheSorter class
refers to a strategy object and forwards calls of thesort method to
the strategy object, i.e., based on the dynamic type of the referred
strategy object, e.g.,BubbleSort, different implementations are
executed for the forwarded method (sort) at runtime.

Advantages Variant algorithms, e.g., linear sort, i.e., method im-
plementations, are modularized in classes, e.g.,LinearSort,
and can vary at runtime for a givenSorter object. Conditional
statements to choose the proper implementation are prevented,
e.g., for methodsort, since the implementations for meth-
ods are exchanged by assigning another strategy object to the
Sorter object.

Disadvantages The strategy objects, e.g., of typeBubbleSort,
only can manipulate members of theSorter class that are
declared aspublic.
The forwarding of method calls by theSorter class decreases
performance.
The classes that use theSorter object to sort elements assign
the appropriate strategy objects to theSorter object. Hence,
the client (main) is coupled to the different strategies that are
possible for theSorter class.
Classes that should be applied as strategies for theSorter class
have to implement the commonSortingStrategy interface.

AOP solution. The classes that implement different strategies,
e.g., BubbleSort, are assigned to theSorter objects using a
hashmap inside the aspectStrategyProtocol. A hook method
sort is introduced into theSorter class. Calls to this hook
method are intercepted by PCA. This PCA redirects the calls of the
methodSorter.sort to the sorting methodsBubbleSort.sort
or LinearSort.sort.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
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Figure 91. AOP implementation of the Strategy pattern.

1 i n t [] around(Sorter s, i n t [] numbers): c a l l ( i n t []
Sorter.sort( i n t [])) && t a r g e t (s) && a r g s (numbers)
{

2 Strategy strategy = getConcreteStrategy(s);
3 i f (strategy instanceof BubbleSort) {
4 (( BubbleSort)strategy).sort(numbers);
5 } e l s e i f (strategy instanceof LinearSort) {
6 (( LinearSort) strategy).sort(numbers);
7 } e l s e {
8 / / I n v a l i d s t r a t e g y : c o u l d t h r o w an e x c e p t i o n

h e r e
9 }

10 r e t u r n numbers;
11 }

Figure 92. Changing the state of aQueue object by advice.

TheSorter class does not depend on theStrategy interface,
because the variant code of the methodsort is detached into
the aspectSortingStrategy.
Any class that implements the methodsort can be used to act
as a sorting strategy for theSorter class, i.e., the class does not
have to be subtype of a commonStrategy interface.

Disadvantages The indirection of the hashmap evaluation to get
the associated strategy object decreases performance.
The clients of theSorter object, e.g., themain method, have
to assign the appropriate strategy, e.g.,BubbleSort, to each
Sorter object thus they are closely coupled to theStrategy

objects.

Since the classes that implement the different strategies do not
have to fulfill a common interface, the aspectSortingStrategy

has to analyze the types of strategy objects at runtime thus de-
creasing performance, this is depicted in Figure 92 Lines 3
and 5 to perform the appropriate actions. (Conditional state-
ments to select the strategy to invoke were aimed to be omitted
by Gamma et al. [13] but occur in Lines 3 and 5 of the Fig-
ure 92.)

FOP solution. We present 2 FOP solutions for that pattern: Our
first solution is close to the AOP implementation (Fig. 93). The
strategy object, e.g., of typeBubbleSort, is associated to the
Sorter object by a key-value pair of the hashmap of the singleton
classStrategyProtocol. The mixin SortingStrategy.Sor-

ter.sort forwards calls to the methodsort of the strategy object
which performs the sort.
Solution B is depicted in Figure 94. This implementation is appli-
cable, if the sorting strategy for allSorter objects can be assigned
at compile time, i.e., the sorting strategy shall not be exchanged at
runtime. The sorting strategies, e.g., linear sort or bubble sort, are
chosen by choosing the appropriate feature module, e.g., BUBBLE-
SORT.

Strategy

sort()

exchange()

sort()

exchange()

Sorter

Sort

Sorter
Bubble−

Sort
Linear−

Sorting−

Figure 94. Alternative FOP implementation of the Strategy pat-
tern.

Criteria OOP AOP FOP
Cohesion 0 0 +
Variability 0 + +

Table 21. Evaluation of the pattern Strategy

Advantages The advantages of the OOP and AOP implementa-
tions hold for the FOP implementation.
In solution B the clients of the sorter objects, e.g., themain

method, are decoupled from the strategies of theSorter ob-
jects since they do not have to assign the different sorting strate-
gies to theSorter objects – i.e., they do not have to know them.
In solution B the performance is improved because no hashmap
has to be evaluated and the methods, e.g.,sort andexchange,
do not have to be bound dynamically. In solution B the strat-
egy methods of the strategy objects, e.g.,sort, can access all
members of theSorter class including members declared as
private or protected.13

Disadvantages For solution A the disadvantages of the AOP im-
plementation hold.

4.21.3 Discussion

Cohesion. In the OOP implementation different implementations
for one method of theSorter class are scattered across the classes
SortingStrategy, BubbleSort, andLinearSort. In the AOP
implementation the code regarding differentSorter algorithms is
scattered across the classesBubbleSort, LinearSort and the as-
pectsStrategyProtocol andSortingStrategy. In the FOP im-
plementation the code regarding different strategies for theSorter

class is merged in the feature module DIFFERENTSTRATEGIES.

Variability. In the OOP implementation the classes to be used as
strategies for theSorter class are restricted to those that are sub-
type of the interfaceSortingStrategy. In the AOP and FOP im-
plementations the objects of every class can be assigned to instan-
tiate stragegy objects forSorter objects.

4.21.4 Summary

A summary is given in Table 21.

4.22 The Template Method Design Pattern

4.22.1 Intention

Define the skeleton of an algorithm in an operation, defer-
ring some steps to subclasses. Template Method lets sub-
classes redefine certain steps of an algorithm without chang-
ing the algorithm’s structure [13].

13 If mixin layers are used to implement FOP, the strategy methods, e.g.,
sort, can not access private members of the prior class refinements. Jam-
packs bypass this restriction.
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Figure 95. OOP implementation of the pattern Template Method.

4.22.2 Implementation

OOP solution. Hannemann et al. applied the pattern to com-
pose the complex operation (generate) of String transformation
out of atomic operations. The complex operationgenerate per-
forms different atomic operations which can be exchanged with
respect to the interfaceDecoratedStringGenerator. For exam-
ple, the atomic operationfilter may be implemented in a simple
or fancy way. The different variants of the atomic operations, e.g.,
SimpleGenerator.filter and FancyGenerator.filter, are
defined in sub classesSimpleGenerator andFancyGenerator
of the classDecoratedStringGenerator. By selecting the in-
stantiated class, i.e.,FancyGenerator or SimpleGenerator,
at instantiation time, the variants of the atomic operations (e.g.,
filter) defined in that class are used as steps for the compound
operationgenerate.

Advantages Changing the atomic operations of an the complex
generate operation does not effect the implementation of the
generate method.

Disadvantages The variants associated to the complex operation
generate have to be anticipated by invoking hook methods of
atomic operations.

If the complex operationgenerate should be replaced the class
DecoratedStringGenerator has to be extended or replaced
thus causing code replication or invasive changes.

AOP solution. In the AOP implementation the variant complex
operationgenerate is introduced by the aspectGenerating using
ITD, see Figure 96.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
The composed operation can vary without replicating the prim-
itive operations.
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Figure 96. AOP implementation of the pattern Template Method.

Disadvantages Hook methods for the atomic operations are still
necessary.

FOP solution. We present two solutions for the implementation
of that pattern: In solution A the variant complex operation is sep-
arated from the implementations of the atomic operations in the
feature moduleTEMPLATEMETHOD, see Figure 97.
Solution B (Fig. 98) is applicable if the atomic operation, e.g.,
filter, to compose the complex operationgenerate can be cho-
sen at compile time.

Advantages The advantages of the OOP and AOP implementation
hold for the FOP implementations A and B.
Solution B decreases the number of virtual methods in C++
since the different variants of methods are introduced directly
into the class without inheritance. That improves the perfor-
mance and the resource consumption of the software [10].
Solution B does not demand for hook methods.

Disadvantages For solution A hook methods are still needed to ap-
ply different primitive operations, e.g.,filter, to the complex
operationgenerate.

4.22.3 Discussion

Cohesion. All implementations of the Template Method design
pattern are equivalent regarding cohesion. In all classes the com-
plex operation is decoupled from the concrete implementation of
the primitive operations. In all techniques the implementations of
the different variants of the primitive operations are separated from
each other.
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Criteria OOP AOP FOP
Cohesion 0 0 0
Variability 0 + +

Table 22. Evaluation of the pattern Template Method

Variability. In the OOP implementation the primitive operations,
e.g.,filter, are tangled with the complex operationgenerate
due to inheritance. The AOP and FOP implementations decouple
the primitive operations from the complex methodgenerate and
thus thegenerate method can be exchanged.

4.22.4 Summary

A summary is given in Table 22.

4.23 The Visitor Design Pattern

4.23.1 Intention

Represent an operation to be performed on the elements of
an object structure. Visitor lets you define a new operation
without changing the classes of the elements on which it
operates [13].

1 p u b l i c c l a s s BinaryTreeNode i m p l e m e n t s Visitable {
2 p u b l i c v o i d accept(BinaryTreeVisitor visitor) {
3 visitor.visitNode( t h i s );
4 }
5 }
6 ...

1 p u b l i c c l a s s SummationVisitor i m p l e m e n t s
BinaryTreeVisitor {

2 p r o t e c t e d i n t sum = 0;
3
4 p u b l i c v o i d visitNode(Visitable node) {
5 BinaryTreeNode rnode = (BinaryTreeNode) node;
6 rnode.left.accept( t h i s );
7 rnode.right.accept( t h i s );
8 }
9

10 p u b l i c v o i d visitLeaf(Visitable node) {
11 BinaryTreeLeaf leaf = (BinaryTreeLeaf) node;
12 sum += leaf.getValue ();
13 }
14 ...
15 }

Figure 99. Application of an visitor to visited classes.

4.23.2 Implementation

OOP solution. Hannemann et al. apply the visitor pattern to per-
form operations on a tree structure, like summation of tree elements
(SummationVisitor) or to display the tree (TraversalVisitor).
For that, the visitor object, e.g., of typeSummationVisitor, is
applied to the root node of the tree structure, using theaccept

method. Thisaccept method invokes avisitNode or visitLeaf
method of the overgiven visitor object using itself as parameter.
Before or after processing the root node of the tree the visitor
object applies itself to the children of the root node by invoking
theiraccept method and thus the whole tree structure is traversed
recursively before or after processing the nodes. This recursion
end when a leaf is processed by the visitor (visitLeaf). The
visitLeaf method processes the leaf node and returns. By back-
tracking the result for the root node, i.e., for the whole tree struc-
ture, is calculated, e.g., the sum of the elements. An example listing
is depicted in Figure 99. The listing depicts theaccept method of
the classBinaryTreeNode (that objects are no leafs, Lines 1–6).
If a visitor X is applied, its methodvisitNode is invoked (Line
3) giving the identity as parameter. ThevisitNode of the visi-
tor object (Lines 10–14) processes a tree node, except leafs, i.e.,
it applies itself to the children of the tree node (Lines 12–13).
BinaryTreeLeaf objects invoke thevisitLeaf method of the
visitor (Lines 16–19) and are processed directly, e.g., the value is
added to the sum (Line 17).

Advantages The visitor classesSummationVisitor andTraver-
salVisitor each merge the code regarding one operation to
be performed on the tree structure, e.g., summation of all ele-
ments of a tree. Consequently, new operations to be performed
on the tree structure and can be added by adding further visitor
classes.
The visited objects, e.g., of typeBinaryTreeLeaf or Binary-
TreeNode, do not have to implement the same interface nor do
they have to be related at all. Hence, the visitor pattern allows
to navigate across different class hierarchies.
The operation that can process unrelated objects of arbitrary
types does not demand for global variables or additional pa-
rameters to keep track about the operation.

Disadvantages If objects of a new class, e.g.,AnotherTreeNode,
are introduced into the tree structure, all visitor classes, e.g.,
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Figure 100. OOP implementation of the Visitor pattern.

SummationVisitor, have to be extended to process this new
tree node typeAnotherTreeNode.
The visitor, e.g.,SummationVisitor, only can access pub-
lic members of the visited classesBinaryTreeNode and
BinaryTreeLeaf to perform its operation.
The extension by visitors has to be anticipated by implementing
anaccept method in every visitable class.

AOP solution. Hannemann et al. merge the code of associ-
ated to visitors of a tree structure (with two kinds of elements)
into the aspectVisitorProtocol. The tree node classes, e.g.,
BinaryTreeLeaf, are assigned to implement the interfacesNode

and Leaf. These interfaces implement theaccept methods that
allow visitor objects to process the tree node objects. Additionally,
the aspectVisitorProtocol assigns the classesSummationVisi-
tor andTraversalVisitor to implement theVisitor interface
so that they can be applied to theaccept methods of the tree ele-
ments.

Advantages The advantages of the OOP implementation hold for
the AOP implementation.
The tree classes, e.g.,BinaryTreeNode, do not have to be pre-
pared to be processable for visitor objects, i.e., they do not have
to implement theaccept method from beginning.

Disadvantages Code regarding one class, e.g.,BinaryTreeNode,
is scattered across the classesBinaryTreeNode, Summation-
Visitor, andTraversalVisitor.
The visitor classes, e.g.,TraversalVisitor, only can access
public members of the tree node classes to perform their opera-
tion.

FOP solution. We present 2 approaches for that pattern: So-
lution A is close to the AOP implementation, see Figure 102.
The tree node classesBinaryTreeNode, BinaryTreeLeaf, and
Visitable are extended to inherit the methodaccept from the
classesLeaf andNode respectively. That method allows visitors,
like SummationVisitor, to process the tree node classes. Addi-
tionally, the visitor classesSummationVisitor andTraversal-
Visitor are assigned to theVisitor interface so that they can be
applied to theaccept method of the tree node classes.
Solution B is a simplification of solution A. Since the distinc-
tion of tree node types, e.g.,BinaryTreeNode, in the visitor is
implemented through distinction of method names in theaccept

method (see Fig. 99) the classesLeaf andNode can be omitted
(Fig. 103). Mixin classes that introduce theaccept methods in-
herit theVisitableNode interface left. The methods defined in
the classesNode andLeaf are transfered into refinements of the
tree node classes.

Advantages The advantages of the OOP and AOP implementation
hold for the FOP implementation.

Criteria OOP AOP FOP
Cohesion 0 + +
Variability 0 + +

Table 23. Evaluation of the pattern Visitor

Disadvantages Visitors only can access public members of the tree
node classes, e.g.,BinaryTreeNode, to perform their opera-
tion.

4.23.3 Discussion

Cohesion. We haveto consider two issues:

• In the OOP, AOP, and FOP implementations the code associ-
ated to a tree node class, e.g.,BinaryTreeLeaf, is scattered
across the respective class, e.g.,BinaryTreeLeaf, and the vis-
itorsSummationVisitor andTraversalVisitor.
In the OOP, AOP and FOP implementations the code re-
garding one operation is merged in the visitor classes, e.g.,
SummationVisitor.

• In the OOP implementation the tree node classes, e.g.,Binary-

TreeNode, are closely coupled to variant behavior of operations
due to theaccept method.
In the AOP and FOP implementations the tree node classes
are not coupled to the variant behavior of the visitor classes,
because theaccept method is introduced subsequently.

Variability. In the OOP implementation the visitor classes, e.g.,
SummationVisitor, are restricted to the classes that are subtype
a common interfaceVisitor so that they can be accepted by the
tree nodes. In the AOP and FOP implementations all classes, that
provide thevisitNode andvisitLeaf method can be used as a
visitor due to subsequent extension.

4.23.4 Summary

The primary problem the visitor pattern aims to solve is to extend
classes without changing them – that can be surfed by simple AOP
introductions or FOP refinements respectively.
Since Java prevent multiple inheritance and in that AOP implemen-
tation indeed multiple inheritance is used the transformed feature
module in FOP has to be split. Furthermore, theVisitableNode.-

accept method had to be deleted, which does not matter because
the only class inheriting this implementation overrides this method
anyway.
The authors criticize that classes inherit from internal classes of an
aspect directly.

5. Conclusions
GoF design patterns are well known and used to improve flexibility
and reusability of software that is implemented in OOP. Hanne-
mann et al. observed a lack of modularity in object-oriented design
pattern implementations and thus improved the pattern implemen-
tations using AOP [15]. We followed the line of Hannemann et al.
and reimplemented their design pattern implementations with FOP.
We defined criteriacohesionandvariability and used these criteria
to evaluate and compare OOP, AOP, and FOP design pattern imple-
mentations.
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